Abstract:
A magnetically free region of magnetoresistive device includes at least a first ferromagnetic region and a second ferromagnetic region separated by a non-magnetic insertion region. At least one of the first ferromagnetic region and the second ferromagnetic region may include at least a boron-rich ferromagnetic layer positioned proximate a boron-free ferromagnetic layer.
Abstract:
A magnetically free region of magnetoresistive device includes at least a first ferromagnetic region and a second ferromagnetic region separated by a non-magnetic insertion region. At least one of the first ferromagnetic region and the second ferromagnetic region may include at least a boron-rich ferromagnetic layer positioned proximate a boron-free ferromagnetic layer.
Abstract:
A magnetoresistive device includes a magnetically fixed region and a magnetically free region positioned on opposite sides of a tunnel barrier region. One or more transition regions, including at least a first transition region and second transition region, is positioned between the magnetically fixed region and the tunnel barrier region. The first transition region includes a non-ferromagnetic transition metal and the second transition region includes an alloy including iron and boron.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A method is provided for healing reset errors for a magnetic memory using destructive read with selective write-back, including for example, a self-referenced read of spin-torque bits in an MRAM. Memory cells are prepared for write back by one of identifying memory cells determined in error using an error correcting code and inverting the inversion bit for those memory cells determined in error identifying memory cells determined in error using an error correcting code and resetting a portion of the memory cells to the first state; and resetting one or more memory cells to the first state.
Abstract:
A magnetic field sensor that includes a differential bridge in which each path of the bridge includes a first type of magnetic field sensing device and a second type of magnetic field sensing device. The first and second types of magnetic field sensing devices differ in the magnetic moment imbalance present in the synthetic antiferromagnets (SAFs) included in their reference layers such that that different types of devices produce a different response to perpendicular magnetic fields, but the same response to in-plane magnetic fields. Such different magnetic moment imbalances in the SAFs of magnetic field sensing devices included in a bridge allow for accurate sensing of perpendicular magnetic fields in a differential manner that also cancels out interference from in-plane fields. Techniques for producing such magnetic field sensing devices on an integrated circuit are also presented. Moreover, the free layers within the magnetic field sensing devices can be adjusted in terms of their sensitivity range and level of sensitivity by manipulating the kink filed (Hk) for those free layers.
Abstract:
A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.
Abstract:
A magnetoresistive device includes a magnetically fixed region and a magnetically free region positioned on opposite sides of a tunnel barrier region. One or more transition regions, including at least a first transition region and second transition region, is positioned between the magnetically fixed region and the tunnel barrier region. The first transition region includes a non-ferromagnetic transition metal and the second transition region includes an alloy including iron and boron.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.