Abstract:
A hybrid vehicle includes an engine and an electric machine selectively coupled to one another via a clutch. In one mode of operation, the vehicle can be propelled by only the electric machine while the engine is off. When additional torque is required from the engine, at least one controller transmits an engine start request. In order to start the engine, the clutch can be prestroked such that it fills with pressure prior to the engine to start the engine. While the vehicle is on, at least one controller is programmed to prestroke the clutch prior to the engine start request based at least upon the electric machine and the engine generating substantially zero torque. This reduces the overall engine start time.
Abstract:
A hybrid vehicle includes an engine, battery, electric machine, and controller. The engine is configured to propel the vehicle. The electric machine is configured to draw energy from the battery to propel the vehicle and to recharge the battery during regenerative braking. The controller is programmed to, in response to operation of the electric machine to propel the vehicle while the vehicle is in a nominal vehicle operation mode and depletion of a battery charge to a nominal value, terminate operation of the electric machine and propel the vehicle via the engine. The controller further is programmed to, in response to operation of the electric machine to propel the vehicle while the vehicle is in a reserve vehicle operation mode and depletion of the battery charge to a reserve value that is greater than the nominal value, terminate operation of the electric machine and propel the vehicle via the engine.
Abstract:
A vehicle may include a transmission having an electric machine, an engine, and a controller. The engine may be selectively coupled with the transmission via a disconnect clutch. The controller may be programmed to, in response to an anticipated engine start request, command a disconnect clutch pre-stroke to couple the engine to the transmission prior to an actual engine start request while operating the vehicle in electric mode.
Abstract:
An auto-seek operating mode for an electric vehicle adjusts the vehicle using a vehicle power steering system and a vehicle traction motor to move the vehicle toward a target connector for a utility power grid to charge a vehicle traction battery. If needed, vertical vehicle position adjustments may be made using a controllable vehicle suspension system.
Abstract:
A hybrid vehicle includes an engine, battery, electric machine, and controller. The engine is configured to propel the vehicle. The electric machine is configured to draw energy from the battery to propel the vehicle and to recharge the battery during regenerative braking. The controller is programmed to, in response to operation of the electric machine to propel the vehicle while the vehicle is in a nominal vehicle operation mode and depletion of a battery charge to a nominal value, terminate operation of the electric machine and propel the vehicle via the engine. The controller further is programmed to, in response to operation of the electric machine to propel the vehicle while the vehicle is in a reserve vehicle operation mode and depletion of the battery charge to a reserve value that is greater than the nominal value, terminate operation of the electric machine and propel the vehicle via the engine.
Abstract:
A vehicle includes a motor positioned between an engine and a driveline connected to a vehicle wheel, and a controller. The controller controls engine torque and maintains motor torque during wheel torque and driveline component torque reversals to limit a vehicle output torque rate of change through a lash region associated with a range of driveline torque ratios. A method of controlling a hybrid vehicle includes controlling engine torque to a specified profile and maintaining motor torque at a generally constant value during at least one of wheel torque and driveline component torque reversals to limit a vehicle output torque rate of change through a lash region associated with a range of driveline torque ratios.
Abstract:
A vehicle may include a transmission having an electric machine, an engine, and a controller. The engine may be selectively coupled with the transmission via a disconnect clutch. The controller may be programmed to, in response to an anticipated engine start request, command a disconnect clutch pre-stroke to couple the engine to the transmission prior to an actual engine start request while operating the vehicle in electric mode.
Abstract:
A hybrid electric vehicle has a traction motor, a driveline connected to a vehicle wheel, and a controller. The controller is configured to control motor torque through a region surrounding vehicle wheel torque reversal, control driveline input torque during torque reversal of driveline output torque to limit rate of change of driveline output torque, and control motor torque during a torque reversal of at least one driveline component to limit rate of change of the torque applied to the driveline component. A method for controlling a vehicle having a traction motor includes controlling the traction motor torque through a region surrounding a vehicle wheel torque reversal, controlling driveline input torque during torque reversal of driveline output torque to limit rate of change of output torque, and controlling traction motor torque during a torque reversal of a powertrain component to limit rate of change of the torque applied to the component.
Abstract:
A hybrid electric vehicle has a traction motor, a driveline connected to a vehicle wheel, and a controller. The controller is configured to control motor torque through a region surrounding vehicle wheel torque reversal, control driveline input torque during torque reversal of driveline output torque to limit rate of change of driveline output torque, and control motor torque during a torque reversal of at least one driveline component to limit rate of change of the torque applied to the driveline component. A method for controlling a vehicle having a traction motor includes controlling the traction motor torque through a region surrounding a vehicle wheel torque reversal, controlling driveline input torque during torque reversal of driveline output torque to limit rate of change of output torque, and controlling traction motor torque during a torque reversal of a powertrain component to limit rate of change of the torque applied to the component.
Abstract:
An auto-seek operating mode for an electric vehicle adjusts the vehicle using a vehicle power steering system and a vehicle traction motor to move the vehicle toward a target connector for a utility power grid to charge a vehicle traction battery. If needed, vertical vehicle position adjustments may be made using a controllable vehicle suspension system.