Abstract:
A power system has a power-electronic module that includes a housing defining a looped reservoir, a ferro-magnetic medium sealed within and filling the looped reservoir, and a conductor surrounded by the ferro-magnetic medium. The conductor is coiled within and along the looped reservoir, and has terminals extending out of the reservoir such that the ferro-magnetic medium and conductor form an inductor that opposes changes in magnitude of current flowing through the conductor.
Abstract:
A power converter receives a DC supply voltage across a phase leg. The phase leg comprises an upper switching device and a lower switching device coupled across the DC link, wherein a junction between the upper and lower switching devices is configured to be coupled to a load. A gate driver is coupled to the phase leg activating the respective upper switching device according to an upper gate signal and activating the respective lower switching device according to a lower gate signal in response to a pulse-width modulation (PWM) control signal at a PWM frequency. The gate driver shuffles among a plurality of alternate paired sets of dead-time inserted signals. Each paired set of dead-time inserted signals corresponds to a different distortion of a current flowing in the load, so that overall distortion is dispersed.
Abstract:
A power converter has one or more phase legs, each with upper and lower switching devices. A current sensor detects a magnitude of a current flow from a respective leg. A gate driver activates the upper and lower devices according to gate signals determined in response to a PWM control signal. When the detected current magnitude is greater than a positive threshold then the lower gate signal includes a dead-time insertion and the upper gate signal does not include a dead-time insertion. When the detected current magnitude is less than a negative threshold then the upper gate signal includes a dead-time insertion and the lower gate signal does not include a dead-time insertion. When the detected current magnitude is between the positive threshold and the negative threshold then the upper gate signal and the lower gate signal both include a dead-time insertion. Output distortion and control delay are greatly reduced.
Abstract:
A method according to an exemplary aspect of the present disclosure includes, among other things, controlling a power supply system to avoid an over-voltage event across one or more switching devices of the power supply system, the controlling step based on switching overlap information that includes instructions for either advancing or retarding a switching signal associated with at least one of the switching devices.
Abstract:
A power converter has a phase leg with upper and lower switching devices coupled across a DC link. A junction between the devices is coupled to a load. A current sensor detects direction of current flow from the junction to the load. A gate driver activates the devices according to upper and lower gate signals in response to pulse-width modulation (PWM) to generate nominal gate signals from a variable duty cycle. When the positive current direction is detected then the upper gate signal has turn-on and turn-off times shifted by a predetermined offset with respect to the nominal signals, and dead-times are added to the lower gate signals. When the negative direction is detected then the lower gate signal has turn-on and turn-off times shifted by the predetermined offset with respect to the nominal signals, and dead-times are added to the upper gate signals.
Abstract:
A method includes controlling a power supply system to avoid an over-voltage event across one or more switching devices of the power supply system. The controlling is based on switching overlap information that includes instructions for either advancing or retarding a switching signal associated with at least one of the switching devices.
Abstract:
A power system has a power-electronic module that includes a housing defining a looped reservoir, a ferro-magnetic medium sealed within and filling the looped reservoir, and a conductor surrounded by the ferro-magnetic medium. The conductor is coiled within and along the looped reservoir, and has terminals extending out of the reservoir such that the ferro-magnetic medium and conductor form an inductor that opposes changes in magnitude of current flowing through the conductor.
Abstract:
An electric drive system of an electrified vehicle has a power converter with phase leg switching devices controlled by pulse-width modulation to supply multi-phase AC to an electric traction motor. Dead-time intervals are inserted into gate drive signals for the switching devices without introducing any significant distortion in the output of the converter. A direction of current flow between a phase leg and the motor is detected. When the current direction is positive, lower gate signals for a lower switching device in the phase leg have a delayed rising edge and an advanced falling edge while upper gate signals are unmodified. When the current direction is negative, upper gate signals for an upper switching device in the phase leg have a delayed rising edge and an advanced falling edge while lower gate signals are unmodified.
Abstract:
A vehicle includes an electric machine, an IGBT, and a gate driver. The IGBT has a gate, an emitter, and a collector and is configured to flow an electric charge through a phase of the electric machine. The gate driver is configured to flow current onto the gate at a first level, and in response to a time integral of a voltage across the phase exceeding a predetermined level, transition from the first level to a second level less than the first level.
Abstract:
An example multilayered bus bar includes, among other things, a first conductive layer, a second conductive layer, and a third conductive layer. The second conductive layer is sandwiched between the first and third conductive layers. A polarity of the second conductive layer is different than a polarity of the first and third conductive layers.