Abstract:
The optical thin film is provided on a substrate and includes, in order, from the substrate side, an interlayer, a silver-containing metal layer, and a dielectric layer, in which an anchor region including an oxide of an anchor metal is provided in an interface region of the silver-containing metal layer on a side close to the interlayer, a cap region including an oxide of the anchor metal is provided in an interface region of the silver-containing metal layer on a side close to the dielectric layer, a film thickness of the silver-containing metal layer is 6 nm or less, the silver-containing metal layer contains a high standard electrode potential metal, and a peak position of a concentration distribution of the high standard electrode potential metal in a film thickness direction of the silver-containing metal layer is positioned closer to the interlayer than a peak position of a silver concentration distribution.
Abstract:
An antireflection film is provided on a substrate and includes an interlayer, a silver-containing metal layer containing silver, and a dielectric layer, which are laminated in this order on a side of a substrate, in which the interlayer is a multilayer film having at least two layers in which a layer of high refractive index having a relatively high refractive index and a layer of lower refractive index having a relatively low refractive index are alternately laminated, the dielectric layer has a surface exposed to air, and the dielectric layer is a multilayer film including a silicon-containing oxide layer, a magnesium fluoride layer, and an adhesion layer provided between the silicon-containing oxide layer and the magnesium fluoride layer and configured to increase adhesiveness between the silicon-containing oxide layer and the magnesium fluoride layer.
Abstract:
Provided is an optical member which includes: a substrate; and a laminated structure including two or more kinds of layers having different materials which are disposed on the substrate, in which the number of layers constituting the laminated structure is 10 or more, the maximum layer thickness of the layers constituting the laminated structure is 8 nm or less, and the minimum transmittance in a wavelength range of 400 nm to 800 nm or in a wavelength range of 6 μm to 12 μm is 10% or more.
Abstract:
An antireflection film includes an uneven structure layer that has an uneven structure and has an alumina hydrate as a main component, and an intermediate layer that is disposed between the uneven structure layer and a substrate. The uneven structure layer has a spatial frequency peak value of the uneven structure of 8.5 or greater and has a film thickness of 200-250 nm, and the intermediate layer comprises a plurality of layers including at least a first layer, a second layer, a third layer, and a fourth layer.
Abstract:
According to an embodiment of the invention, there is provided a laminated structure including, in this order from a side nearer to an object to be cooled: a radiative cooling layer which contains a bubble-containing resin and radiates far-infrared rays to cool the object to be cooled; and a heat insulating layer which contains a bubble-containing resin and has a porosity of 70% or more and in which the number of bubbles contained in a layer thickness direction is 8 or less.
Abstract:
The antireflection film is provided on a surface of a light-transmitting substrate and includes a thin multi-layer film and a fine unevenness layer that are laminated in this order from the substrate side. The thin multi-layer film includes multiple layers. The fine unevenness layer has a structure in which an uneven structure having a shorter average pitch than a wavelength of used light is provided and in which a refractive index to the used light changes continuously depending on a continuous change in a space occupation of the uneven structure in a thickness direction of the thin multi-layer film. The multiple layers include: an oxide film having a relatively high refractive index that is formed of at least two metal elements or is formed of silicon and at least one metal element; and an oxynitride film having a relatively low refractive index.
Abstract:
An antireflection film including a transparent thin film layer, and a transparent fine uneven layer whose main component is an alumina hydrate, which layers are formed in this order on a surface of a transparent substrate, is provided. The transparent thin film layer includes, in order from the transparent substrate side: an alumina layer; a water barrier layer which has a refractive index lower than the refractive index of the alumina layer and protects the alumina layer from water; and a flat layer whose main component is an alumina hydrate and whose refractive index is lower than the refractive index of the water barrier layer, and the water barrier layer has a thickness of 70 nm or less.
Abstract:
An acoustic lens (7) for an ultrasound transducer that is disposed in a front end portion of an ultrasound transducer (1) has a concave front surface (C1) and is formed from a base material (B) in which a plurality of fine particles (G) are dispersed. As a degree of dispersion of the fine particles (G) is higher from a central portion toward both end portions in an elevation direction, acoustic velocity is lower from the central portion toward both end portions in the elevation direction.
Abstract:
An optical thin film formed by laminating, from the substrate side, an interlayer, a silver-containing metal layer that contains silver, and a dielectric layer, in which an anchor metal diffusion control layer provided between the interlayer and the silver-containing metal layer, an anchor region which includes an oxide of the anchor metal and has a surface energy that is less than the surface energy of the silver-containing metal layer and larger than the surface energy of the anchor metal diffusion control layer is provided between the anchor metal diffusion control layer and the silver-containing metal layer, a cap region which includes an oxide of the anchor metal is provided between the silver-containing metal layer and the dielectric layer, and the total film thickness of the silver-containing metal layer, the anchor region, and the cap region is 6 nm or less.
Abstract:
Provided is a method of manufacturing a structure having a transparent fine uneven structural body formed by hot water treatment, in which a finer uneven structure is formed. Provided is a method of manufacturing a structure, the method being for manufacturing a structure including a substrate, and a transparent fine uneven structural body which is formed on a surface of the substrate by hot water treatment, including: a first step of forming a precursor film of the transparent fine uneven structural body on the substrate; a second step of forming a fine uneven structure on a surface of the precursor film; and a third step of subjecting, to hot water treatment, the precursor film on which the fine uneven structure is formed to form the transparent fine uneven structural body in which a peak value v0 of space frequency of the unevenness of the fine uneven structure formed in the second step satisfies v