Abstract:
Provided is a curable composition including oxide particles that include at least indium and tin, and to which a ligand having a hydrocarbon group and a binding site to the oxide particles is bonded; and a polymerizable compound, in which a content of the oxide particles in the composition is 18 mass % or more with respect to a total solid content of the composition; and a cured product of the curable composition or a lens unit including the cured product.
Abstract:
A method of producing a thin film transistor includes: forming a gate electrode; forming a gate insulating film that contacts the gate electrode; forming, by a liquid phase method, an oxide semiconductor layer arranged facing the gate electrode with the gate insulating film provided therebetween, the oxide semiconductor layer including a first region and a second region, the first region being represented by In(a)Ga(b)Zn(c)O(d), the second region being represented by In(e)Ga(f)Zn(g)O(h), and the second region being located farther from the gate electrode than the first region; and forming a source electrode and a drain electrode that are arranged apart from each other and are capable of being conductively connected through the oxide semiconductor layer.
Abstract:
A method of fabricating a thin-film transistor, the method including: film-forming an active layer, that contains as a main component thereof an oxide semiconductor structured by O and at least two elements among In, Ga and Zn, in a film formation chamber into which at least oxygen is introduced, and b) heat treating the active layer at less than 300° C. in a dry atmosphere, wherein the film-forming a) and the heat treating are carried out such that, given that an oxygen partial pressure with respect to an entire pressure of an atmosphere within the film formation chamber in the film-forming is PO2depo (%), and an oxygen partial pressure with respect to an entire pressure of an atmosphere during the heat treating is PO2anneal (%), the oxygen partial pressure PO2anneal (%) at the time of the heat treating b) satisfies a relationship: −20/3PO2depo+40/3≦PO2anneal≦−800/43PO2depo+5900/43.
Abstract:
There is provided a method of manufacturing a semiconductor element including: forming a semiconductor film of which a principal constituent is an oxide semiconductor; forming a first insulation film on a surface of the semiconductor film; applying a heat treatment in an oxidizing atmosphere; and, forming a second insulation film on a surface of the first insulation film, wherein a thickness of the first insulation film and a temperature of the heat treatment in the third step are adjusted such that, if the thickness of the first insulation film is represented by Z (nm), the heat treatment temperature is represented by T (° C.) and a diffusion distance of oxygen into the first insulation film and the semiconductor film is represented by L (nm), the relational expression 0
Abstract:
A semiconductor film includes a cluster of semiconductor quantum dots each having a metal atom and ligands coordinating to respective semiconductor quantum dots, and the semiconductor quantum dots have an average shortest inter-dot distance of less than 0.45 nm. A solar cell, a light-emitting diode, a thin film transistor, and an electronic device include the semiconductor film.
Abstract:
An object of the present invention is to provide a core shell particle having high luminous efficacy and a narrow emission half-width; a method of producing the same; and a film formed of the core shell particle. The core shell particle of the present invention includes: a core which contains a Group III element and a Group V element; a first shell which covers at least a part of a surface of the core; a second shell which covers at least a part of the first shell; and a coordination molecule in at least a part of an outermost surface, in which at least oxygen is detected by X-ray photoelectron spectroscopy analysis, and a molar ratio of the oxygen to the Group III element contained in the core, which is acquired by X-ray photoelectron spectroscopy analysis, is 6.1 or less.
Abstract:
An object of the present invention is to provide a multicore shell particle having excellent photostability; a nanoparticle dispersion liquid containing the multicore shell particle; and a film obtained by using the multicore shell particle. A multicore shell particle of the present invention includes a plurality of semiconductor cores; and a semiconductor shell A which contains the plurality of semiconductor cores.
Abstract:
An object of the present invention is to provide a core shell particle having high luminous efficacy and excellent durability; a method of producing the same; and a film obtained by using the core shell particle. The core shell particle of the present invention includes: a core which contains a Group III element and a Group V element; a first shell which covers at least a part of a surface of the core; and a second shell which covers at least a part of the first shell, in which at least a part of a surface of the core shell particle contains a metal-containing organic compound containing a metal element and a hydrocarbon group.
Abstract:
An object of the present invention is to provide a core shell particle having high luminous efficacy and excellent durability; a method of producing the same; and a film formed of the core shell particle. The core shell particle of the present invention includes: a core which contains a Group III element and a Group V element; a first shell which covers at least a part of a surface of the core; and a second shell which covers at least a part of the first shell, in which the core shell particle includes a protective layer containing a metal oxide that covers at least a part of the second shell, and at least a part of a surface of the protective layer includes coordination molecules.
Abstract:
An object of the present invention is to provide a core shell particle having high luminous efficacy and a narrow emission half-width; a method of producing the same; and a film formed of the core shell particle. The core shell particle of the present invention includes: a core which contains a Group III element and a Group V element; a first shell which covers at least a part of a surface of the core; a second shell which covers at least a part of the first shell; and a coordination molecule in at least a part of an outermost surface, in which at least silicon is detected by X-ray photoelectron spectroscopy analysis, and a molar ratio of the silicon to the Group III element contained in the core, which is acquired by X-ray photoelectron spectroscopy analysis, is 3.1 or less.