摘要:
There are disclosed herein various implementations of a bipolar semiconductor device having a charge-balanced inter-trench structure. Such a device includes a drift region having a first conductivity type situated over an anode layer having a second conductivity type. The device also includes first and second control trenches extending through an inversion region having the second conductivity type into the drift region, each of the first and second control trenches being bordered by a cathode diffusion having the first conductivity type. In addition, the device includes an inter-trench structure situated in the drift region between the first and second control trenches. The inter-trench structure includes one or more first conductivity regions having the first conductivity type and one or more second conductivity region having the second conductivity type, the one or more first conductivity regions and the one or more second conductivity regions configured to substantially charge-balance the inter-trench structure.
摘要:
The collector or anode of a non-punch through IGBT formed in a float zone silicon wafer is formed by a P doped amorphous silicon layer deposited on the back surface of an ultra thin wafer. A DMOS structure is formed on the top surface of the wafer before the bottom structure is formed. A back contact is formed over the amorphous silicon layer. No alloy step is needed to activate the anode defined by the P type amorphous silicon.
摘要:
A very low VCEON non punch through trench IGBT built-in non-epitaxial float zone silicon has a depletion stop layer structure added to its bottom surface.
摘要:
A high voltage MOSgated semiconductor device has a generally linear MOSFET type forward current versus forward voltage characteristic at low voltage and the high current, low forward drop capability of an IGBT. The device is particularly useful as the control transistor for a television tube deflection coil. The device is formed by a copacked discrete IGBT die and power MOSFET die in which the ratio of the MOSFET die area is preferably about 25% that of the IGBT. Alternatively, the IGBT and MOSFET can be integrated into the same die, with the IGBT and MOSFET elements alternating laterally with one another and overlying respective P+ injection regions and N+ contact regions respectively on the bottom of the die. The MOSFET and IGBT elements are preferably spaced apart by a distance of about 1 minority carrier length (50-100 microns for a 1500 volt device).
摘要:
The collector (anode) of a non punch through IGBT formed in a float zone silicon monocrystaline wafer is formed with a DMOS top structure and is thereafter ground at its bottom surface to a less than 250 micron thickness. A shallow P type implant is then made in the bottom surface and the wafer is then heated in vacuum to about 400° C. for about 30 to 60 seconds to remove moisture and other contaminants from the bottom surface. An aluminum layer is then sputtered on the bottom surface, followed by other metals to form the bottom electrode. No activation anneal is necessary to activate the weak collector junction.
摘要:
A very low VCEON non punch through trench IGBT built-in non-epitaxial float zone silicon has a depletion stop layer structure added to its bottom surface.
摘要:
Semiconductor devices having recombination centers comprised of well-positioned heavy metals. At least one lattice defect region within the semiconductor device is first created using particle beam implantation. Use of particle beam implantation positions the lattice defect region(s) with high accuracy in the semiconductor device. A heavy metal implantation treatment of the device is applied. The lattice defects created by the particle beam implantation act as gettering sites for the heavy metal implantation. Thus, after the creation of lattice defects and heavy metal diffusion, the heavy metal atoms are concentrated in the well-positioned lattice defect region(s).
摘要:
An IGBT is formed in a thin (less than 250 microns thick) float zone silicon wafer using a hydrogen implant to form an N+ buffer layer at the bottom of the wafer. A weak anode is formed on the bottom of the wafer. A single hydrogen implant, or a plurality of hydrogen implants of progressively shallower depth and increasing dose can be used to form the implant in a diffused float zone wafer. The process may also be used to form an N+ contact region in silicon to permit a good ohmic contact to the silicon for any type device.
摘要:
A soft recovery diode is made by first implanting helium into the die to a location below the P/N junction and the implant annealed. An E-beam radiation process then is applied to the entire wafer and is also annealed. The diode then has very soft recovery characteristics without requiring heavy metal doping.
摘要:
A vertical conduction MOSFET semiconductor device is formed in a non-epitaxial (float zone) lightly doped silicon substrate. Device junction regions are formed in the top surface of the lightly doped float zone substrate. The backside of the wafer is then ground by surface grinding to attain a desired thickness. Phosphorus, or another N type dopant species, is then implanted into the back surface and is activated by a laser anneal. Back surface damage caused by grinding and/or implantation is intentionally retained. Alternatively, a “transparent” layer is formed by depositing highly doped amorphous silicon on the back surface. Titanium, or another metal (excluding aluminum), is then deposited on the back surface and annealed to form a titanium silicide, or other silicide for a contact electrode.