摘要:
A multi-cell battery pack in an electric vehicle is monitored by multiple sensing modules. A primary controller is coupled to a first plurality of cells to measure a predetermined parameter of each cell. The primary controller determines a sampling moment recurring at a fixed frequency for sampling the predetermined parameter of each of the first plurality of cells. The primary controller generates a sync pulse at each sample moment. A secondary controller is coupled to a second plurality of cells to measure the predetermined parameter of each cell. The secondary controller receives the sync pulse to start a pulse generator operating at a frequency which is a predetermined multiple of the primary controller fixed frequency. The secondary controller counts pulses generated by the pulse generator and schedules a synchronized secondary sampling moment according to a predetermined pulse count.
摘要:
A portable high voltage charging apparatus (HVCA) can be configured to controllably charge a hybrid electric vehicle (HEV) traction battery using energy provided by a low voltage (LV) lead acid vehicle battery. An HVCA can include a DCDC converter configured to boost a lower input voltage from the LV battery to a higher output voltage provided to the HV battery. The HVCA can be configured with a traction battery interlock, allowing offline charging of the traction battery. In an example embodiment, an HVCA can be configured to communicate with an HV battery control module via a CAN bus. An HVCA can be configured to transfer energy to the HV battery for a predetermined time period, then automatically stop the transfer process. An HVCA can be configured to receive user input to start and/or stop a charging process. An example embodiment can include a supplemental charger to boost LV battery voltage.
摘要:
A battery simulator is configured to provide large energy pulses for hot plug testing while maintaining the ability to quickly respond during random order testing. A simulator can comprise a plurality of cell simulators “cellsims” coupled to a DC power supply. Each cellsim can include a bidirectional DC converter, a bulk capacitor on the primary side of the converter, and a switchable discharge capacitor on the secondary side of the converter. The bidirectional DC converter enables the simulator to cooperate with a battery control module (BCM) to perform active cell balancing. Energy received from the BCM can be stored at the bulk capacitor. The discharge capacitor can be coupled to an output link to provide a high energy pulse to the BCM to simulate hot plug conditions, and can be decoupled from the link during random order testing. Output link voltage and current can be monitored for fault detection.
摘要:
A voltage sensing system for a vehicle traction battery having a plurality of cells includes: a battery controller, a plurality of electrical circuits, each being respectively connected to at least one of the cells and including an electrical component for limiting current therethrough, and a plurality of wires, each being respectively connected to one of the electrical circuits in series with a respective one of the electrical components for limiting current and the controller.
摘要:
A battery simulator is configured to provide large energy pulses for hot plug testing while maintaining the ability to quickly respond during random order testing. A simulator can comprise a plurality of cell simulators “cellsims” coupled to a DC power supply. Each cellsim can include a bidirectional DC converter, a bulk capacitor on the primary side of the converter, and a switchable discharge capacitor on the secondary side of the converter. The bidirectional DC converter enables the simulator to cooperate with a battery control module (BCM) to perform active cell balancing. Energy received from the BCM can be stored at the bulk capacitor. The discharge capacitor can be coupled to an output link to provide a high energy pulse to the BCM to simulate hot plug conditions, and can be decoupled from the link during random order testing. Output link voltage and current can be monitored for fault detection.
摘要:
An example contactor weld detection method for an electric vehicle includes detecting that a contactor is welded closed when the contactor is commanded closed.
摘要:
An electrical leakage detection circuit detects electrical leakage of a battery in an electric vehicle. A first transistor switch coupled between a first and second resistor is actuated for coupling the first resistor and the second resistor. A second transistor switch coupled between a third and fourth resistor is actuated for electrically coupling the third and fourth resistor. A controller generates control signals for actuation of the first transistor switch and the second transistor switch. A first voltage is measured across the traction battery cell string. A second voltage is measured across the second resistor. A third voltage is measured across the third resistor. The controller detects electrical leakage by measuring the first, second, and third voltages and applying them in equations utilizing these voltages with constants of the first, second, third, and fourth resistances.
摘要:
A voltage sensing system for a vehicle traction battery having a plurality of cells includes: a battery controller, a plurality of electrical circuits, each being respectively connected to at least one of the cells and including an electrical component for limiting current therethrough, and a plurality of wires, each being respectively connected to one of the electrical circuits in series with a respective one of the electrical components for limiting current and the controller.
摘要:
Systems, apparatus, and methods are presented to transfer energy between an energy storage device (ESD) at an electrified vehicle (EV) and an AC or DC external load such as an electric grid, appliance or power tool. A portable EVETA can engage an EV charge inlet couple an EV, and can provide an AC outlet, a grid interface and a DC connector for coupling external loads. An EVETA can be used at a remote construction site or campsite to power high current equipment, obviating the need to transport an electric generator. An EVETA can be configured for data and control communication with the EV to coordinate energy transfer. An EVETA can receive a predetermined ESD state of charge limit so that the transfer process can be terminated to preserve sufficient charge for EV return to a desired destination. A human machine interface enables user input reception and information display.
摘要:
A monitor system for an inventoried battery includes at least one battery pack; at least one embedded monitor subsystem interfacing with the battery pack, the embedded monitor system adapted to acquire sensor data from the battery pack; and at least one archival data storage system interfacing with the embedded monitor subsystem, the archival data storage system adapted to archive the sensor data. A method of monitoring a stored battery is also disclosed.