摘要:
A process for device fabrication and resist materials that are used in the process are disclosed. The resist material contains a polymer in combination with a dissolution inhibitor and a photoacid generator (PAG). The dissolution inhibitor is the condensation reaction product of a saturated polycyclic hydrocarbon compound with at least one hydroxy (OH) substituent and a difunctional saturated linear, branched, or cyclic hydrocarbon compound wherein the functional groups are either carboxylic acid or carboxylic acid chloride groups. The condensation product has at least two polycylic moieties. The polymer optionally has acid labile groups pendant thereto which significantly decrease the solubility of the polymer in a solution of aqueous base. A film of the resist material is formed on a substrate and exposed to delineating radiation. The radiation induces a chemical change in the resist material rendering the exposed resist material substantially more soluble in aqueous base solution than the unexposed portion of the resist material. The image introduced into the resist material is developed using conventional techniques, and the resulting pattern is then transferred into the underlying substrate.
摘要:
A process for device fabrication and resist materials that are used in the process are disclosed. The resist material contains a substituted amine-containing component and a polymer. The substituted-amine containing component is either a photoacid generator, or an amine additive to the resist material that also contains a photoacid generator. The resist material contains acid labile groups either pendant to the polymer or to a dissolution inhibitor that is combined with the polymer. The acid labile groups significantly decrease the solubility of the polymer in a solution of aqueous base. A film of the resist material is formed on a substrate and exposed to delineating radiation. The radiation induces a chemical change in the resist material rendering the exposed resist material substantially more soluble in aqueous base solution than the unexposed portion of the resist material. The image introduced into the resist material is developed using conventional techniques, and the resulting pattern is then transferred into the underlying substrate.
摘要:
The present invention is directed to a process for device fabrication and resist materials that are used in the process. The resist material contains a polymer that is the polymerization product of a monomer that contains alicyclic moieties and at least one other monomer. The polymer is formed by free radical polymerization, and the resulting polymer either has alicyclic moieties incorporated into the polymer backbone or pendant to the polymer backbone via saturated hydrocarbon linkages. Other monomers are selected for polymerization with the alicyclic moiety-containing monomer on the basis of the ability of the monomer to copolymerize by free radical polymerization. Although the polymers are contemplated as useful in resist materials that are sensitive to radiation in the ultraviolet, and x-ray wavelengths as well as sensitive to electron beam radiation, the polymers are particularly advantageous for use in process in which the exposing radiation is 193 nm, because the amount of ethylenic unsaturation in these resist materials is low.
摘要:
Photoacid generators advantageous for use in applications such as photoacid generators used in chemically amplified resists are disclosed. These compounds are based on an ortho nitro benzyl configuration employing an .alpha. substituent having high bulk, steric characteristics, and electron withdrawing ability. The enhanced efficacy is particularly found in compounds both having a suitable .alpha. substituent and a second ortho substituent with large electron withdrawing and steric effects.
摘要:
A process for device fabrication is disclosed. In the process, an energy sensitive material is formed on a substrate. The energy sensitive resist material contains a polymer or a polymer blend in combination with an energy-sensitive material such as a photoacid generator. At least three substituents are distributed on the polymer blend. The first of these substituents is a hydroxyl (OH) group. The second of these substituents is an acid-sensitive or acid labile group which is cleaved in the presence of acid and replaced by an OH group. The third of these substituents forms hydrogen bonds with the first group. The ratio of the number of OH substituents relative to the number of substituents that hydrogen bond to the OH substituents (mole percent) is about 40:1 to at least about 1:1. The relative amounts of the first and third substituents is selected to provide a resist material with a glass transition temperature of at least about 60.degree.. After a layer of the energy sensitive resist material is formed on the substrate, an image of a pattern is introduced into the energy-sensitive material via a patternwise exposure to radiation. The image is thereafter developed into a pattern, and transferred into the underlying substrate.
摘要:
Photoacid generators advantageous for use in applications such as photoacid generators used in chemically amplified resists are disclosed. These compounds are based on an ortho nitro benzyl configuration employing an .alpha. substituent having high bulk, steric characteristics, and electron withdrawing ability. The enhanced efficacy is particularly found in compounds both having a suitable .alpha. substituent and a second ortho substituent with large electron withdrawing and steric effects.
摘要:
A process for device fabrication and resist materials that are used in the process are disclosed. The resist material contains acid labile groups either pendant to the polymer or to a dissolution inhibitor that is combined with the polymer. The acid labile groups significantly decrease the solubility of the polymer in a solution of aqueous base. The resist material also contains a photoacid generator and a radical scavenger. The radical scavenger reduces the amount of aromatic compounds outgassed from the resist during the lithographic process. A film of the resist material is formed on a substrate and exposed to delineating radiation. The radiation induces a chemical change in the resist material rendering the exposed resist material substantially more soluble in aqueous base solution than the unexposed portion of the resist material. The image introduced into the resist material is developed using conventional techniques, and the resulting pattern is then transferred into the underlying substrate.
摘要:
Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
摘要:
The present invention provides methods and an apparatus controlling and minimizing process defects in a development process, and modifying line width roughness (LWR) of a photoresist layer after the development process, and maintaining good profile control during subsequent etching processes. In one embodiment, a method for forming features on a substrate includes developing and removing exposed areas in the photosensitive layer disposed on the substrate in the electron processing chamber by predominantly using electrons, removing contaminants from the substrate by predominantly using electrons, and etching the non-photosensitive polymer layer exposed by the developed photosensitive layer in the electron processing chamber by predominantly using electrons.