摘要:
By providing a safety material, such as an adhesive foil, the probability for transport-related damage or destruction of substrates caused by broken substrates may be significantly reduced.
摘要:
By forming a metal line extending through the entire interlayer dielectric material in resistance sensitive metallization layers, enhanced uniformity of these metallization layers may be obtained. The patterning of respective via openings may be accomplished on the basis of a recess formed in a cap layer, which additionally acts as an efficient etch stop layer during the patterning of the trenches, which extend through the entire interlayer dielectric material. Consequently, for a given design width of metal lines in resistance sensitive metallization layers, a maximum cross-sectional area may be obtained for the metal line with a high degree of process uniformity irrespective of a variation of the via density.
摘要:
By removing excess material of an interlayer dielectric material deposited by SACVD, the gap filling capabilities of this deposition technique may be exploited, while, on the other hand, negative effects of this material may be reduced. In other aspects, a buffer material, such as silicon dioxide, may be formed prior to depositing the interlayer dielectric material on the basis of SACVD, thereby creating enhanced uniformity during the deposition process when depositing the interlayer dielectric material on dielectric layers having different high intrinsic stress levels. Consequently, the reliability of the interlayer dielectric material may be enhanced while nevertheless maintaining the advantages provided by an SACVD deposition.
摘要:
By removing excess material of an interlayer dielectric material deposited by SACVD, the gap filling capabilities of this deposition technique may be exploited, while, on the other hand, negative effects of this material may be reduced. In other aspects, a buffer material, such as silicon dioxide, may be formed prior to depositing the interlayer dielectric material on the basis of SACVD, thereby creating enhanced uniformity during the deposition process when depositing the interlayer dielectric material on dielectric layers having different high intrinsic stress levels. Consequently, the reliability of the interlayer dielectric material may be enhanced while nevertheless maintaining the advantages provided by an SACVD deposition.
摘要:
In a replacement gate approach for forming high-k metal gate electrodes in semiconductor devices, a tapered configuration of the gate openings may be accomplished by using a tensile stressed dielectric material provided laterally adjacent to the gate electrode structure. Consequently, superior deposition conditions may be achieved while the tensile stress component may be efficiently used for the strain engineering in one type of transistor. Furthermore, an additional compressively stressed dielectric material may be applied after providing the replacement gate electrode structures.
摘要:
By forming an isolation structure that extends above the height level defined by the semiconductor material of an active region, respective recesses may be defined in combination with gate electrode structures of the completion of basic transistor structures. These recesses may be subsequently filled with an appropriate contact material, thereby forming large area contacts in a self-aligned manner without requiring deposition and patterning of an interlayer dielectric material. Thereafter, the first metallization layer may be formed, for instance, on the basis of well-established techniques wherein the metal lines may connect directly to respective “large area” contact elements.
摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
摘要:
By forming a highly non-conformal stressed overlayer, such as a contact etch stop layer, the efficiency of the stress transfer into the respective channel region of a field effect transistor may be significantly increased. For instance, non-conformal PECVD techniques may be used for forming highly stressed silicon nitride in a non-conformal manner, thereby achieving higher transistor performance for otherwise identical stress conditions.
摘要:
In sophisticated semiconductor devices, an efficient stress decoupling may be accomplished between neighboring transistor elements of a densely packed device region by providing a gap or a stress decoupling region between the corresponding transistors. For example, a gap may be formed in the stress-inducing material so as to reduce the mutual interaction of the stress-inducing material on the closely spaced transistor elements. In some illustrative aspects, the stress-inducing material may be provided as an island for each individual transistor element.
摘要:
Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.