Abstract:
The disclosure provides a non-volatile memory structure and a method for fabricating the same. The non-volatile memory structure includes a first contact connected to a first transistor. A second contact is connected to a second transistor. A resistance-changing memory material pattern covers and contacts the second contact but not the first contact. A top electrode contacts both the resistance-changing memory material pattern and the first contact. An area of the resistance-changing memory material pattern is substantially larger than an area of its interface with the second contact.
Abstract:
A resistive memory cell is described, including a first electrode, a high-resistance ferroelectric material layer and a second electrode. The ferroelectric material layer has a first interface with the first electrode and has a second interface with the second electrode, wherein the second interface is not parallel with the first interface. A method of operating the resistive memory cell is also described, including applying between the first electrode and the second electrode a series of voltages, which has positive polarity and negative polarity alternately and has descending absolute values, to form in the ferroelectric material layer at least one domain wall with low resistance.
Abstract:
A resistive random access memory (RRAM) cell including a first electrode, a second electrode, and a plurality of repeated sets of layers is provided. Each of the sets of layers includes a resistance-changing layer, a barrier layer, and an ionic exchange layer between the resistance-changing layer and the barrier layer, wherein a thickness of each of the resistance-changing layer, the barrier layer and the ionic exchange layer exceeds a Fermi wavelength, and the thickness each of the resistance-changing layer and ionic exchange layer are less than an electron mean free path. Further, a RRAM module including the aforesaid RRAM cell and a switch is also provided.
Abstract:
A resistance memory cell including a variable resistance layer is provided. The variable resistance layer includes at least one dominant resistance layer and at least one auxiliary resistance layer. The dominant resistance layer(s) and the auxiliary resistance layer(s) in totality form a closed ion exchange system, the exchanged ions are comparably mobile in each of the dominant resistance layer(s) and the auxiliary resistance layer(s), and the maximum resistance of the at least one dominant resistance layer is higher than that of the at least one auxiliary resistance layer.
Abstract:
A memory cell includes a memory element, a current-limiting element electrically coupled to the memory element, and a high-selection-ratio element electrically coupled to the current-limiting element. The memory element is configured to store data as a resistance state. The current-limiting element is a voltage-controlled resistor (VCR) having a resistance that decreases when a voltage applied thereto increases. The high-selection-ratio element has a first resistance that is small when a voltage applied to the memory cell is approximately equal to a selection voltage of the memory cell, and has a second resistance that is substantially larger than the first resistance when the voltage applied to the memory cell is approximately equal to one-half of the selection voltage.
Abstract:
A phase-change memory element is provided. The phase-change memory element includes: a first electrode formed on a substrate; a first dielectric layer, with an opening, formed on the first electrode, wherein the opening exposes a top surface of the first electrode; a pillar structure formed directly on the first electrode within the opening; an inner phase-change material layer surrounding the pillar structure, directly contacting the first electrode; a second dielectric layer surrounding the inner phase-change material layer; an outer phase-change material layer surrounding the second dielectric layer; a phase-change material collar formed between the second dielectric layer and the first electrode, connecting the inner phase-change material layer with the outer phase-change material layer; and a second electrode formed directly on the pillar structure, directly contacting the top surface of the inner phase-change material layer.
Abstract:
A phase change memory device is disclosed. A second conductive spacer is under a first conductive spacer. A phase change layer comprises a first portion substantially parallel to the first and second conductive spacers and a second portion on top of the second conductive spacer, wherein the second conductive spacer is electrically connected to the first conductive spacer through the second portion of the phase change layer.
Abstract:
A method for forming patterns comprises providing a substrate. A set of seed features is formed over the substrate. At least one bi-layer comprising a first layer followed by a second layer is formed on the set of seed features. The first layer and the second layer above the set of seed features are removed. The first layer and the second layer are anisotropically etched successively at least one time to form an opening next to the set of seed features.
Abstract:
An attenuated phase shift mask (AttPSM) is fabricated with a set of fully transmitting regions, some parts adjacent phase-shifting regions with a first reduced transmission and first phase shift near 180 degrees, and remaining parts adjacent phase-shifting regions with a second transmission higher than the first transmission and second phase shift lower than the first phase shift.
Abstract:
An attenuated phase shift mask (AttPSM) is fabricated with a set of fully transmitting regions, some parts adjacent phase-shifting regions with a first reduced transmission and first phase shift near 180 degrees, and remaining parts adjacent phase-shifting regions with a second transmission higher than the first transmission and second phase shift lower than the first phase shift.