摘要:
The invention relates to a tubular reactor for carrying out catalytic gas-phase reactions, containing a catalyst tube bundle (8) that is traversed by the relevant reaction gas mixture, is filled with a catalyst, extends between two tube sheets (4, 148) and around which flows a heat transfer medium contained within a surrounding reactor jacket (6). The reactor also comprises gas entry and discharge hoods (2; 60) that cover the two tube sheets for supplying the relevant process gas to the catalyst tubes and for discharging the reacted process gas from the catalyst tubes. Together with all the parts that come into contact with the process gas mixture, the reactor is designed to have an appropriate strength for withstanding the deflagration and explosive pressures that are to be taken into account during its operation. The volume available to the process gas mixture prior to its entry into the catalyst tubes is restricted as much as possible in construction and flow engineering terms.
摘要:
The invention relates to a tubular reactor for carrying out catalytic gas-phase reactions, containing a catalyst tube bundle (8) that is traversed by the relevant reaction gas mixture, is filled with a catalyst, extends between two tube sheets (4, 148) and around which flows a heat transfer medium contained within a surrounding reactor jacket (6). The reactor also comprises gas entry and discharge hoods (2; 60) that cover the two tube sheets for supplying the relevant process gas to the catalyst tubes and for discharging the reacted process gas from the catalyst tubes. Together with all the parts that come into contact with the process gas mixture, the reactor is designed to have an appropriate strength for withstanding the deflagration and explosive pressures that are to be taken into account during its operation. The volume available to the process gas mixture prior to its entry into the catalyst tubes is restricted as much as possible in construction and flow engineering terms.
摘要:
A cooling system for use in a shell-type reactor includes vertically extending double tubes with an inner tube and an outer tube closed at its lower end. The system also includes a distributor for supplying a fluid cooling medium into the upper end of the inner tubes and a horizontally extending plate, which on its upper surface includes at least two upwardly open, parallel grooves. Two adjacent grooves are separated by a common inner wall. At least one outer tube, having an upper end, is disposed in each groove, through the plate. Each outer tube is tightly welded to the plate on the groove base. The upper, open side of each groove is closed with a lid, so that each groove forms a collector for discharging the cooling medium from the outer tubes. Each inner tube opens through the lid into a distributor and is tightly attached to the lid.
摘要:
A cooling system for use in a shell-type reactor includes vertically extending double tubes with an inner tube and an outer tube closed at its lower end. The system also includes a distributor for supplying a fluid cooling medium into the upper end of the inner tubes and a horizontally extending plate, which on its upper surface includes at least two upwardly open, parallel grooves. Two adjacent grooves are separated by a common inner wall. At least one outer tube, having an upper end, is disposed in each groove, through the plate. Each outer tube is tightly welded to the plate on the groove base. The upper, open side of each groove is closed with a lid, so that each groove forms a collector for discharging the cooling medium from the outer tubes. Each inner tube opens through the lid into a distributor and is tightly attached to the lid.
摘要:
A method for carrying out endothermic or exothermic gas phase reactions by using a tube bundle reactor with a tube bundle of catalyst-filled reaction tubes comprises the following steps: a) Introducing a reaction gas mixture into the reaction tubes; b) Dividing-up of the reaction gas mixture flow flowing through each of the reaction tubes into at least two partial flows, each partial flow having the same composition; c) Feeding-in of each partial flow at a different point along the catalyst filling with an existing flow resistance; d) Determining the desired partial flow volume for each partial flow (V1, V2, V3, V4); e) Calculating the pressure at the point of the first division of the reaction gas mixture (9); f) Calculating the pressure in the catalyst filling (12) at the point of feeding-in of each partial flow (V1, V2, V3, V4); and g) Setting of flow resistance for each point of feeding-in in such a way that the flow resistance at the desired partial flow volume corresponds to the pressure difference between the pressures determined in steps e) and f).
摘要:
A tube bundle reactor for carrying out catalytic gas phase reactions, particularly methanation reactions, has a bundle of catalyst-filled reaction tubes through which reaction gas flows and around which heat carrier flows during operation. In the region of the catalyst filling, the reaction tubes run through at least two heat carrier zones which are separated from one another, the first of which heat carrier zones extends over the starting region of the catalyst filling. The reaction tubes each have a first reaction tube portion with a first hydraulic diameter of the catalyst filling and, downstream thereof in flow direction of the reaction gas, at least a second reaction tube portion with a second hydraulic diameter of the catalyst filling that is greater than the first hydraulic diameter of the catalyst filling.
摘要:
A set of prefabricated tube bundle reactor subassemblies is proposed which are adapted to be assembled at a construction site to provide a tube bundle reactor for carrying out catalytic gas and/or liquid phase reactions. In accordance with the invention, the reactor shell and the reactor heads, on the one hand, and the tube bundle and the tube sheets, on the other hand, form separate subassemblies, more specifically at least one shell/head subassembly, at least one head subassembly, and at least one tube bundle subassembly. The subassemblies comprise means for vertically supporting the tube bundle subassembly and for pressure tightly connecting the shell/head subassembly to the tube sheets without requiring heat treatment during assembly of the subassemblies. Likewise proposed are a tube bundle reactor for carrying out catalytic gas and/or liquid phase reactions and an arrangement of the kind of tube bundle reactors mentioned.
摘要:
A set of prefabricated tube bundle reactor subassemblies is proposed which are adapted to be assembled at a construction site to provide a tube bundle reactor for carrying out catalytic gas and/or liquid phase reactions. In accordance with the invention, the reactor shell and the reactor heads, on the one hand, and the tube bundle and the tube sheets, on the other hand, form separate subassemblies, more specifically at least one shell/head subassembly, at least one head subassembly, and at least one tube bundle subassembly. The subassemblies comprise means for vertically supporting the tube bundle subassembly and for pressure tightly connecting the shell/head subassembly to the tube sheets without requiring heat treatment during assembly of the subassemblies. Likewise proposed are a tube bundle reactor for carrying out catalytic gas and/or liquid phase reactions and an arrangement of the kind of tube bundle reactors mentioned.
摘要:
A tube bundle reactor for carrying out catalytic gas phase reactions, particularly methanation reactions, has a bundle of catalyst-filled reaction tubes through which reaction gas flows and around which heat carrier flows during operation. In the region of the catalyst filling, the reaction tubes run through at least two heat carrier zones which are separated from one another, the first of which heat carrier zones extends over the starting region of the catalyst filling. The reaction tubes each have a first reaction tube portion with a first hydraulic diameter of the catalyst filling and, downstream thereof in flow direction of the reaction gas, at least a second reaction tube portion with a second hydraulic diameter of the catalyst filling that is greater than the first hydraulic diameter of the catalyst filling.
摘要:
A method of varying the temperature of a tube bundle reactor for catalytic gas phase reactions upon start-up and shut-down, the tube bundle reactor comprising a major reactor portion which includes a bundle of vertically disposed reactor tubes, upper and lower tubesheets tightly connected to the upper and lower ends, respectively, of the reactor tubes, and a reactor shell enclosing the tube bundle, a heat transfer medium having a melting temperature in the range of from 100° C. to 450° C. flowing around the outer surfaces of the reactor tubes during normal operation and being circulated in at least one circuit through the major reactor portion, comprising the steps: (a) varying the heat transfer medium temperature during circulation of the heat transfer medium; and (b) passing a temperature gas through the reactor tubes at least when the heat transfer medium is not yet or no longer circulated.