Abstract:
A method of monitoring a temperature of a plurality of regions in a substrate during a deposition process, the monitoring of the temperature including: forming, in the monitored plurality of regions, a plurality of metal structures each with a different metal pattern density, where each metal pattern density corresponds to a threshold temperature at or above which metal voids and surface roughness are formed in the plurality of metal structures, and detecting metal voids and surface roughness in the plurality of metal structures to determine the temperature of the monitored plurality of regions.
Abstract:
A system for electromigration testing is disclosed. The system includes a conductive member, a cap layer of insulative material over at least a portion of a top surface of the conductive member, a cathode conductively connected to a first end of the conductive member; an anode conductively connected to a second end of the conductive member, and a current source conductively connected to the cathode and the anode. A plurality of sensory pins are disposed along a length of the conductive member between the first end and the second end of the conductive member. The sensory pins are conductively connected to a bottom surface of the conductive member. At least one measurement device is conductively connected to at least one sensory pin of the plurality of sensory pins. The at least one measurement device determines a resistance of at least one portion of the conductive member.
Abstract:
Embodiments of the disclosure provide a substrate structure for an integrated circuit (IC) structure, including: a first dielectric layer positioned above a semiconductor substrate; a first plurality of trenches extending at least partially into the first dielectric layer from an upper surface of the first dielectric layer; and a first metal formed within the first plurality of trenches, wherein a spatial arrangement of the first plurality of trenches causes coupling of surface plasmons in the first metal to at least one wavelength of an incident light.
Abstract:
The disclosure relates to semiconductor structures and, more particularly, to waveguide structures used in phonotics chip packaging and methods of manufacture. The structure includes: a first die comprising photonics functions including a waveguide structure; a second die bonded to the first die and comprising CMOS logic functions; and an optical fiber optically coupled to the waveguide structure and positioned within a cavity formed in the second die.
Abstract:
A system for electromigration testing is disclosed. The system includes a conductive member, a cap layer of insulative material over at least a portion of a top surface of the conductive member, a cathode conductively connected to a first end of the conductive member; an anode conductively connected to a second end of the conductive member, and a current source conductively connected to the cathode and the anode. A plurality of sensory pins are disposed along a length of the conductive member between the first end and the second end of the conductive member. The sensory pins are conductively connected to a bottom surface of the conductive member. At least one measurement device is conductively connected to at least one sensory pin of the plurality of sensory pins. The at least one measurement device determines a resistance of at least one portion of the conductive member.
Abstract:
Embodiments of the disclosure provide a substrate structure for an integrated circuit (IC) structure, including: a first dielectric layer positioned above a semiconductor substrate; a first plurality of trenches extending at least partially into the first dielectric layer from an upper surface of the first dielectric layer; and a first metal formed within the first plurality of trenches, wherein a spatial arrangement of the first plurality of trenches causes coupling of surface plasmons in the first metal to at least one wavelength of an incident light.
Abstract:
The disclosure relates to semiconductor structures and, more particularly, to waveguide structures used in phonotics chip packaging and methods of manufacture. The structure includes: a first die comprising photonics functions including a waveguide structure; a second die bonded to the first die and comprising CMOS logic functions; and an optical fiber optically coupled to the waveguide structure and positioned within a cavity formed in the second die.