Abstract:
A powertrain system is configured to transfer propulsion torque to a driveline of a vehicle. A method for controlling the powertrain system includes determining a magnitude of unintended vehicle motion based upon a difference between a change in actual vehicle acceleration and a change in an operator-intended vehicle acceleration. Propulsion torque to the driveline is limited when a fault associated with unintended vehicle motion is detected and the magnitude of unintended vehicle motion is less than a predetermined first threshold.
Abstract:
A system and method for providing fault mitigation in a vehicle system having high side drivers (HSDs) and low side drivers (LSDs) are provided. The system includes a first HSD and a plurality of first LSDs. The system also includes a selected first plurality of actuators, with each actuator connected to the first HSD and connected to a respective one of the first LSDs to operate in a first operational mode. The system further includes a second HSD and a plurality of second LSDs. The system also includes a selected second plurality of actuators, with each actuator connected to the second HSD and connected to a respective one of the second LSDs to operate in a second operational mode. When a failed component sets a fault, the corresponding HSD is turned off and the other HSD is turned on, enabling the vehicle system to operate in the non-faulted operational mode.
Abstract:
A method applying an electric park brake system of a vehicle includes detecting a park request with a first vehicle control module, and sending a park command, from the first vehicle control module, to both an electric brake control module and a second vehicle control module. Upon the electric brake control module receiving the park command, an actuation signal is sent from the electric brake control module to a motor winding of the electric park brake system. A status actuated signal is sent from the electric brake control module to the second vehicle control module. The status actuated signal indicates that the actuation signal has been sent from the electric brake control module. A position of the motor winding is sensed to determine if the motor winding is actuated. When the motor winding is actuated, a message is displayed to indicate that the electric park brake system is applied.
Abstract:
An electric machine electrically connects to an inverter via a multi-phase power circuit. A method for monitoring the multi-phase power circuit includes non-intrusively adjusting a commanded AC electric current from the inverter after a prescribed time period and comparing a measured magnitude of AC electric current in the multi-phase power circuit with a minimum threshold. Presence of an open circuit fault in the multi-phase power circuit can be detected based upon the comparison.
Abstract:
A method applying an electric park brake system of a vehicle includes detecting a park request with a first vehicle control module, and sending a park command, from the first vehicle control module, to both an electric brake control module and a second vehicle control module. Upon the electric brake control module receiving the park command, an actuation signal is sent from the electric brake control module to a motor winding of the electric park brake system. A status actuated signal is sent from the electric brake control module to the second vehicle control module. The status actuated signal indicates that the actuation signal has been sent from the electric brake control module. A position of the motor winding is sensed to determine if the motor winding is actuated. When the motor winding is actuated, a message is displayed to indicate that the electric park brake system is applied.
Abstract:
A system and method for providing fault mitigation in a vehicle system having high side drivers (HSDs) and low side drivers (LSDs) are provided. The system includes a first HSD and a plurality of first LSDs. The system also includes a selected first plurality of actuators, with each actuator connected to the first HSD and connected to a respective one of the first LSDs to operate in a first operational mode. The system further includes a second HSD and a plurality of second LSDs. The system also includes a selected second plurality of actuators, with each actuator connected to the second HSD and connected to a respective one of the second LSDs to operate in a second operational mode. When a failed component sets a fault, the corresponding HSD is turned off and the other HSD is turned on, enabling the vehicle system to operate in the non-faulted operational mode.
Abstract:
A method of controlling a transmission includes initiating a temporary neutral mode of the transmission, in which at least one clutch of the transmission is disengaged to prevent power flow through the transmission, when an upshift paddle selector and a downshift paddle selector are both engaged within a pre-defined engagement time window. At least one of the upshift paddle selector and the downshift paddle selector is held in their respective engaged positions to maintain the temporary neutral mode of the transmission. The temporary neutral mode of the transmission is ended when both of the upshift paddle selector and the downshift paddle selector are disengaged, by re-engaging the at least one transmission clutch that was disengaged to initiate the temporary neutral mode.
Abstract:
A system according to the principles of the present disclosure includes an acceleration delta module and a remedial action module. The acceleration delta module determines an acceleration delta of a vehicle based on a difference between an actual acceleration of the vehicle and a desired acceleration of the vehicle. The acceleration delta module also determines an average value of the acceleration delta corresponding to at least one of a first predetermined period and a predetermined number of samples of the acceleration delta. The remedial action module, based on the average value of the acceleration delta and independent of a torque command generated to accelerate the vehicle, selectively takes a remedial action by adjusting operation of at least one of an engine and an electric motor.