METHOD AND APPARATUS FOR RESISTANCE SPOT WELDING OVERLAPPING STEEL WORKPIECES

    公开(公告)号:US20190001428A1

    公开(公告)日:2019-01-03

    申请号:US15638699

    申请日:2017-06-30

    Abstract: A method of resistance spot welding a workpiece stack-up comprising overlapping first and second steel workpieces is disclosed, wherein at least one of the steel workpieces comprises an advanced high-strength steel substrate. The workpiece stack-up is positioned between a pair of opposed first and second welding electrodes. A cover is disposed between at least one of the first steel workpiece and the first welding electrode or the second steel workpiece and the second welding electrode at an intended weld site. The workpiece stack-up is clamped between the first and second welding electrodes at the weld site such that at least one of the weld faces of the first and second welding electrodes presses against the cover. The first and second steel workpieces are welded together by passing an electrical current between the first and second welding electrodes at the weld site.

    INCREASING STRENGTH OF AN ALUMINUM ALLOY
    2.
    发明申请

    公开(公告)号:US20180127859A1

    公开(公告)日:2018-05-10

    申请号:US15346699

    申请日:2016-11-08

    Inventor: Bin Hu Pan Wang Qi Lu

    Abstract: In an example of a method for increasing strength of an aluminum alloy, the aluminum alloy is formed in a molten state. The aluminum alloy includes from about 4 wt % to about 11 wt % silicon, from greater than 0.2 wt % to about 0.5 wt % chromium, from about 0.1 wt % to about 0.5 wt % magnesium, from about 0.01 wt % to about 0.1 wt % titanium, equal to or less than about 0.5 wt % iron, equal to or less than about 0.5 wt % manganese, and a balance of aluminum. The aluminum alloy is subjected to a solution heat treatment. The aluminum alloy is quenched, and the aluminum alloy is age hardened at an age hardening temperature ranging from about 140° C. to 175° C. for a time period ranging from about 3 hours to about 35 hours.

    Press hardened steel with surface layered homogenous oxide after hot forming

    公开(公告)号:US11530469B2

    公开(公告)日:2022-12-20

    申请号:US16460369

    申请日:2019-07-02

    Inventor: Qi Lu Jianfeng Wang

    Abstract: A press-hardened steel is provided. The press-hardened steel has an alloy matrix including from about 0.01 wt. % to about 0.35 wt. % carbon, from about 1 wt. % to about 9 wt. % chromium, from about 0.5 wt. % to about 2 wt. % silicon, and a balance of iron. The alloy matrix is greater than or equal to about 95 vol. % martensite. A first layer is disposed directly on the alloy matrix. The first layer is continuous, has a thickness of greater than or equal to about 0.01 μm to less than or equal to about 10 μm, and includes an oxide enriched with chromium and silicon. A second layer is disposed directly on the first layer, and includes an oxide enriched with Fe. Methods of preparing the press-hardened steel are also provided.

    COMBINED HEATING AND TRANSFER OF WORK-PIECE BLANKS

    公开(公告)号:US20220162721A1

    公开(公告)日:2022-05-26

    申请号:US17101243

    申请日:2020-11-23

    Abstract: A method of forming a component includes providing a work-piece blank from a formable material. The method also includes engaging the work-piece blank with a transfer device. The method additionally includes austenitizing the work-piece blank in the transfer device via heating the blank to achieve austenite microstructure therein. The method also includes transferring the austenitized blank to a forming press using the transfer device. The method additionally includes forming the component via the forming press from the austenitized blank and quenching the formed component. A work-piece blank transfer system includes a transfer device having clamping arm(s) for engaging, holding, transferring, and releasing the work-piece blank. The transfer device also includes a heating element configured to austenitize the work-piece blank via heating the blank to achieve austenite microstructure therein. The transfer system additionally includes an electronic controller programmed to regulate the heating element and the clamping arm(s).

Patent Agency Ranking