摘要:
Methods, apparatus and systems for virtualization of a native instruction set are disclosed. Embodiments include a processor core executing the native instructions and a second core, or alternatively only the second processor core consuming less power while executing a second instruction set that excludes portions of the native instruction set. The second core's decoder detects invalid opcodes of the second instruction set. A microcode layer disassembler determines if opcodes should be translated. A translation runtime environment identifies an executable region containing an invalid opcode, other invalid opcodes and interjacent valid opcodes of the second instruction set. An analysis unit determines an initial machine state prior to execution of the invalid opcode. A partial translation of the executable region that includes encapsulations of the translations of invalid opcodes and state recoveries of the machine states is generated and saved to a translation cache memory.
摘要:
Methods, apparatus and systems for virtualization of a native instruction set are disclosed. Embodiments include a processor core executing the native instructions and a second core, or alternatively only the second processor core consuming less power while executing a second instruction set that excludes portions of the native instruction set. The second core's decoder detects invalid opcodes of the second instruction set. A microcode layer disassembler determines if opcodes should be translated. A translation runtime environment identifies an executable region containing an invalid opcode, other invalid opcodes and interjacent valid opcodes of the second instruction set. An analysis unit determines an initial machine state prior to execution of the invalid opcode. A partial translation of the executable region that includes encapsulations of the translations of invalid opcodes and state recoveries of the machine states is generated and saved to a translation cache memory.
摘要:
Methods, apparatus and systems for virtualization of a native instruction set are disclosed. Embodiments include a processor core executing the native instructions and a second core, or alternatively only the second processor core consuming less power while executing a second instruction set that excludes portions of the native instruction set. The second core's decoder detects invalid opcodes of the second instruction set. A microcode layer disassembler determines if opcodes should be translated. A translation runtime environment identifies an executable region containing an invalid opcode, other invalid opcodes and interjacent valid opcodes of the second instruction set. An analysis unit determines an initial machine state prior to execution of the invalid opcode. A partial translation of the executable region that includes encapsulations of the translations of invalid opcodes and state recoveries of the machine states is generated and saved to a translation cache memory.
摘要:
An asymmetric multiprocessor system (ASMP) may comprise computational cores implementing different instruction set architectures and having different power requirements. Program code executing on the ASMP is analyzed by a binary analysis unit to determine what functions are called by the program code and select which of the cores are to execute the program code, or a code segment thereof. Selection may be made to provide for native execution of the program code, to minimize power consumption, and so forth. Control operations based on this selection may then be inserted into the program code, forming instrumented program code. The instrumented program code is then executed by the ASMP.
摘要:
An asymmetric multiprocessor system (ASMP) may comprise computational cores implementing different instruction set architectures and having different power requirements. Program code for execution on the ASMP is analyzed and a determination is made as to whether to allow the program code, or a code segment thereof to execute on a first core natively or to use binary translation on the code and execute the translated code on a second core which consumes less power than the first core during execution.
摘要:
An asymmetric multiprocessor system (ASMP) may comprise computational cores implementing different instruction set architectures and having different power requirements. Program code executing on the ASMP is analyzed by a binary analysis unit to determine what functions are called by the program code and select which of the cores are to execute the program code, or a code segment thereof. Selection may be made to provide for native execution of the program code, to minimize power consumption, and so forth. Control operations based on this selection may then be inserted into the program code, forming instrumented program code. The instrumented program code is then executed by the ASMP.
摘要:
Page faults arising in a graphics processing unit may be handled by an operating system running on the central processing unit. In some embodiments, this means that unpinned memory can be used for the graphics processing unit. Using unpinned memory in the graphics processing unit may expand the capabilities of the graphics processing unit in some cases.
摘要:
Page faults arising in a graphics processing unit may be handled by an operating system running on the central processing unit. In some embodiments, this means that unpinned memory can be used for the graphics processing unit. Using unpinned memory in the graphics processing unit may expand the capabilities of the graphics processing unit in some cases.
摘要:
A processor of an aspect includes an instruction pipeline to process a multiple memory address instruction that indicates multiple memory addresses. The processor also includes multiple page fault aggregation logic coupled with the instruction pipeline. The multiple page fault aggregation logic is to aggregate page fault information for multiple page faults that are each associated with one of the multiple memory addresses of the instruction. The multiple page fault aggregation logic is to provide the aggregated page fault information to a page fault communication interface. Other processors, apparatus, methods, and systems are also disclosed.
摘要:
An apparatus is described having multiple cores, each core having: a) an accelerator; and, b) a general purpose CPU coupled to the accelerator. The general purpose CPU has functional unit logic circuitry to execute an instruction that returns an amount of storage space to store context information of the accelerator.