摘要:
Disclosed is a CMP pad which is abrasive-free and comprises cells and/or a recessed portion-forming material both having an average diameter ranging from 0.05 to 290 μm and occupying a region ranging from 0.1% by volume to 5% by volume based on an entire volume of the pad, and an organic material.
摘要:
A chemical mechanical polishing aqueous dispersion comprises (A) abrasive grains, (B) at least one of quinolinecarboxylic acid and pyridinecarboxylic acid, (C) an organic acid other than quinolinecarboxylic acid and pyridinecarboxylic acid, (D) an oxidizing agent, and (E) a nonionic surfactant having a triple bond, the mass ratio (WB/WC) of the amount (WB) of the component (B) to the amount (WC) of the component (C) being 0.01 or more and less than 2, and the component (E) being shown by the following general formula (1), wherein m and n individually represent integers equal to or larger than one, provided that m+n≦50 is satisfied.
摘要翻译:化学机械研磨用水系分散体包含(A)磨粒,(B)至少一种喹啉羧酸和吡啶羧酸,(C)除喹啉羧酸以外的有机酸和吡啶羧酸,(D)氧化剂,(E )具有三键的非离子表面活性剂,组分(B)的量(WB)与组分(C)的量(WC)的质量比(WB / WC)为0.01以上且小于2, 并且组分(E)由以下通式(1)表示,其中m和n分别表示等于或大于1的整数,条件是满足m + n <= 50。
摘要:
Post-CMP treating liquids are provided, one of which includes water, an amphoteric surfactant, an anionic surfactant, a complexing agent, resin particles having carboxylic group and sulfonyl group on their surfaces, a primary particle diameter thereof ranging from 10 to 60 nm, and tetramethyl ammonium hydroxide. Another includes water, polyphenol, an anionic surfactant, ethylene diamine tetraacetic acid, resin particles having carboxylic group and sulfonyl group on their surfaces, a primary particle diameter thereof ranging from 10 to 60 nm, and tetramethyl ammonium hydroxide. Both of the treating liquids have a pH ranging from 4 to 9, and exhibit a polishing rate both of an insulating film and a conductive film at a rate of 10 nm/min or less.
摘要:
There is disclosed a chemical mechanical polishing method of an organic film comprising forming the organic film above a semiconductor substrate, contacting the organic film formed above the semiconductor substrate with a polishing pad attached to a turntable, and dropping a slurry onto the polishing pad to polish the organic film, the slurry being selected from the group consisting of a first slurry and a second slurry, the first slurry comprising a resin particle having a functional group selected from the group consisting of an anionic functional group, a cationic functional group, an amphoteric functional group and a nonionic functional group, and having a primary particle diameter ranging from 0.05 to 5 μm, the first slurry having a pH ranging from 2 to 8, and the second slurry comprising a resin particle having a primary particle diameter ranging from 0.05 to 5 μm, and a surfactant having a hydrophilic moiety.
摘要:
A substrate holding mechanism, a substrate polishing apparatus and a substrate polishing method have functions capable of minimizing an amount of heat generated during polishing of a substrate to be polished and of effectively cooling a substrate holding part of the substrate holding mechanism, and also capable of effectively preventing a polishing solution and polishing dust from adhering to an outer peripheral portion of the substrate holding part and drying thereon. The substrate holding mechanism has a mounting flange, a support member 6 and a retainer ring. A substrate to be polished is held on a lower side of the support member surrounded by the retainer ring, and the substrate is pressed against a polishing surface of a polishing table. The mounting flange is provided with a flow passage contiguous with at least the retainer ring. A temperature-controlled gas is supplied through the flow passage to cool the mounting flange, the support member and the retainer ring. The retainer ring is provided with a plurality of through-holes communicating with the flow passage to spray the gas flowing through the flow passage onto the polishing surface of the polishing table.
摘要:
A method for manufacturing a semiconductor device is provided, which includes forming a coated film by coating a solution containing a solvent and an organic component above an insulating film located above a semiconductor substrate and having a recess, baking the coated film at a first temperature which does not accomplish cross-linking of the organic component to obtain an organic film precursor, polishing the organic film precursor using a first slurry containing first resin particles and a water-soluble polymer to planarize a surface of the organic film precursor, and polishing the organic film precursor where the surface is planarized using a second slurry containing second resin particles and a water-soluble polymer to leave the organic film precursor in the recess, thereby exposing the insulating film, an average particle diameter of the second resin particles being smaller than that of the first resin particles.
摘要:
There is disclosed a chemical mechanical polishing method of an organic film comprising forming the organic film above a semiconductor substrate, contacting the organic film formed above the semiconductor substrate with a polishing pad attached to a turntable, and dropping a slurry onto the polishing pad to polish the organic film, the slurry being selected from the group consisting of a first slurry and a second slurry, the first slurry comprising a resin particle having a functional group selected from the group consisting of an anionic functional group, a cationic functional group, an amphoteric functional group and a nonionic functional group, and having a primary particle diameter ranging from 0.05 to 5 μm, the first slurry having a pH ranging from 2 to 8, and the second slurry comprising a resin particle having a primary particle diameter ranging from 0.05 to 5 μm, and a surfactant having a hydrophilic moiety.
摘要:
A semiconductor device comprises a semiconductor substrate, an interlayer insulating film including a first insulating film formed above the substrate and having a relative dielectric constant smaller than 2.5 and a second insulating film formed to cover the first insulating film and having a relative dielectric constant larger than that of the first insulating film, and a buried wiring formed within the interlayer insulating film. A bottom portion of the second insulating film is buried in the first insulating film at a number of points.
摘要:
There is disclosed a chemical mechanical polishing method of an organic film comprising forming the organic film above a semiconductor substrate, contacting the organic film formed above the semiconductor substrate with a polishing pad attached to a turntable, and dropping a slurry onto the polishing pad to polish the organic film, the slurry being selected from the group consisting of a first slurry and a second slurry, the first slurry comprising a resin particle having a functional group selected from the group consisting of an anionic functional group, a cationic functional group, an amphoteric functional group and a nonionic functional group, and having a primary particle diameter ranging from 0.05 to 5 μm, the first slurry having a pH ranging from 2 to 8, and the second slurry comprising a resin particle having a primary particle diameter ranging from 0.05 to 5 μm, and a surfactant having a hydrophilic moiety.
摘要:
A chemical mechanical polishing aqueous dispersion comprises (A) abrasive grains, (B) at least one of quinolinecarboxylic acid and pyridinecarboxylic acid, (C) an organic acid other than quinolinecarboxylic acid and pyridinecarboxylic acid, (D) an oxidizing agent, and (E) a nonionic surfactant having a triple bond, the mass ratio (WB/WC) of the amount (WB) of the component (B) to the amount (WC) of the component (C) being 0.01 or more and less than 2, and the component (E) being shown by the following general formula (1), wherein m and n individually represent integers equal to or larger than one, provided that m+n≦50 is satisfied.