摘要:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
摘要:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
摘要:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
The present invention comprises an apparatus and method for etching at a substrate edge region. In one embodiment, the apparatus comprises a chamber having a process volume, a substrate support arranged inside the process volume and having a substrate support surface, a plasma generator coupled to the chamber and configured to supply an etching agent in a plasma phase to a peripheral region of the substrate support surface, and a gas delivery assembly coupled to a gas source for generating a radial gas flow over the substrate support surface from an approximately central region of the substrate support surface toward the peripheral region of the substrate support surface.
摘要:
Embodiments described herein relate to a substrate processing system that integrates substrate edge processing capabilities. Illustrated examples of the processing system include, without limitations, a factory interface, a loadlock chamber, a transfer chamber, and one or more twin process chambers having two or more processing regions that are isolatable from each other and share a common gas supply and a common exhaust pump. The processing regions in each twin process chamber include separate gas distribution assemblies and RF power sources to provide plasma at selective regions on a substrate surface in each processing region. Each twin process chamber is thereby configured to allow multiple, isolated processes to be performed concurrently on at least two substrates in the processing regions.
摘要:
Methods for high temperature deposition an amorphous carbon film with improved step coverage are provided. In one embodiment, a method for of depositing an amorphous carbon film includes providing a substrate in a process chamber, heating the substrate at a temperature greater than 500 degrees Celsius, supplying a gas mixture comprising a hydrocarbon compound and an inert gas into the process chamber containing the heated substrate, and depositing an amorphous carbon film on the heated substrate having a stress of between 100 mega-pascal (MPa) tensile and about 100 mega-pascal (MPa) compressive.
摘要:
Methods of depositing amorphous carbon films on substrates are provided herein. The methods reduce or prevent plasma-induced charge damage to the substrates from the deposition of the amorphous carbon films. In one aspect, an initiation layer of amorphous carbon is deposited at a low RF power level and/or at a low hydrocarbon compound/inert gas flow rate ratio before a bulk layer of amorphous carbon is deposited. After the deposition of the initiation layer, the RF power, hydrocarbon flow rate, and inert gas flow rate may be ramped to final values for the deposition of the bulk layer, wherein the RF power ramp rate is typically greater than the ramp rates of the hydrocarbon compound and of the inert gas. In another aspect, a method of minimizing plasma-induced charge damage includes depositing a seasoning layer on one or more interior surfaces of a chamber before the deposition of the amorphous carbon film on a substrate therein or coating the interior surfaces with an oxide or dielectric layer during manufacturing.
摘要:
Methods of processing films on substrates are provided. In one aspect, the methods comprise treating a patterned low dielectric constant film after a photoresist is removed from the film by depositing a thin layer comprising silicon, carbon, and optionally oxygen and/or nitrogen on the film. The thin layer provides a carbon-rich, hydrophobic surface for the patterned low dielectric constant film. The thin layer also protects the low dielectric constant film from subsequent wet cleaning processes and penetration by precursors for layers that are subsequently deposited on the low dielectric constant film.