Abstract:
A method is provided for manufacturing a fully moulded Multi Media Card package obtained by laser cutting wherein at least some edges and the corners around the package have rounded profile and a sufficient smoothness for a safe handling. The method includes providing a rounded groove on a substrate back side of the package, all around the package profile, and cutting the edges of said package by a laser cutting line passing through said groove. This new technique allows the use of all the 24.0 mm width of the MMC package for the substrate 2, thus increasing the surface available for electronic components.
Abstract:
The present invention relates to leads of a No-Lead type package which includes a chip having an active surface and a rear surface opposite the active surface. The active surface has a plurality of connection points with a plurality of leads arranged around the perimeter of the chip and a first and a second surface orthogonal to said first surface. A plurality of connection wires connect electrically the bonding pads of the chip to the first surface of the leads respectively. The package also includes a welding compound suitable for encapsulating the chip, the first surface of the leads and the bonding pads. The leads possess at least one hole in the second surface of the leads.
Abstract:
A method is provided for manufacturing a fully moulded Multi Media Card package obtained by laser cutting wherein at least some edges and the corners around the package have rounded profile and a sufficient smoothness for a safe handling. The method includes providing a rounded groove on a substrate back side of the package, all around the package profile, and cutting the edges of said package by a laser cutting line passing through said groove. This new technique allows the use of all the 24.0 mm width of the MMC package for the substrate 2, thus increasing the surface available for electronic components.
Abstract:
A manufacturing process of a stacked semiconductor device, comprising the following steps: integrating a plurality of electronic devices in a plurality of active areas realized in a semiconductor wafer; distributing an adhesive layer on active areas, splitting the semiconductor wafer into a plurality of first dies, each one comprising at least one of the active areas; mounting the plurality of first dies, which are already equipped with the adhesive layer, on a support; and mounting a plurality of second dies on the adhesive layer.
Abstract:
A process for the fabrication of devices that integrate protected microstructures, comprising the following steps: forming, in a body of semiconductor material, at least one microstructure having at least one first portion and one second portion which are relatively mobile with respect to one another and are separated from one another by at least one gap region, which is accessible through a face of the body; and sealing the gap. The sealing step includes depositing on the face of the body a layer of protective material, in such a way as to close the gap region, the protective layer being such as to enable relative motion between the first portion and the second portion of the microstructure.