Abstract:
A method is provided for manufacturing a fully moulded Multi Media Card package obtained by laser cutting wherein at least some edges and the corners around the package have rounded profile and a sufficient smoothness for a safe handling. The method includes providing a rounded groove on a substrate back side of the package, all around the package profile, and cutting the edges of said package by a laser cutting line passing through said groove. This new technique allows the use of all the 24.0 mm width of the MMC package for the substrate 2, thus increasing the surface available for electronic components.
Abstract:
A semiconductor electronic device includes a die of semiconductor material and a support. The die of semiconductor material includes an integrated electronic circuit and a plurality of contact pads associated with the electronic circuit and connected electrically to the support by wire leads. Each contact pad may include a lower layer of aluminum, copper, or alloys thereof, and an upper layer including at least one film of a metal and/or metallic alloy including nickel, palladium, or alloys thereof, and being deposited by an electroless chemical process.
Abstract:
An external heat sink is soldered to an internal heat sink incorporated into the bottom of a molded body of encapsulating resin for a package of an integrated power device. The power device is for surface mounting on a printed circuit board. The internal heat sink has at least a portion protruding from an outer surface of at least one face of the molded body. An external heat sink is mounted on the printed circuit board. The external heat sink has at least a surface abutting with a surface of the body, thus defining a separation gap between at least a surface of the protruding portion of the internal heat sink and an opposing surface of the external heat sink. This separation gap is filled with molten solder alloy during a normal soldering treatment of the printed circuit board.
Abstract:
The present invention relates to leads of a No-Lead type package which includes a chip having an active surface and a rear surface opposite the active surface. The active surface has a plurality of connection points with a plurality of leads arranged around the perimeter of the chip and a first and a second surface orthogonal to said first surface. A plurality of connection wires connect electrically the bonding pads of the chip to the first surface of the leads respectively. The package also includes a welding compound suitable for encapsulating the chip, the first surface of the leads and the bonding pads. The leads possess at least one hole in the second surface of the leads.
Abstract:
A semiconductor electronic device includes a die of semiconductor material and a support. The die of semiconductor material includes an integrated electronic circuit and a plurality of contact pads associated with the electronic circuit and connected electrically to the support by wire leads. Each contact pad may include a lower layer of aluminum, copper, or alloys thereof, and an upper layer including at least one film of a metal and/or metallic alloy including nickel, palladium, or alloys thereof, and being deposited by an electroless chemical process.
Abstract:
An electronic device is formed on a chip of semiconductor material covered by a layer of insulating material. Metal interconnection elements form, on the insulating layer, connection pads to which a soldering material is applied. To permit good heat dissipation, the device has a metal plate partially incorporated in the insulating layer and having a surface which is coplanar with the pads and to which soldering material is applied. The electronic device is secured to a mounting substrate having a corresponding metal plate.
Abstract:
A method is provided for manufacturing a fully moulded Multi Media Card package obtained by laser cutting wherein at least some edges and the corners around the package have rounded profile and a sufficient smoothness for a safe handling. The method includes providing a rounded groove on a substrate back side of the package, all around the package profile, and cutting the edges of said package by a laser cutting line passing through said groove. This new technique allows the use of all the 24.0 mm width of the MMC package for the substrate 2, thus increasing the surface available for electronic components.
Abstract:
A semiconductor electronic device includes a die of semiconductor material and a support. The die of semiconductor material includes an integrated electronic circuit and a plurality of contact pads associated with the electronic circuit and connected electrically to the support by wire leads. Each contact pad may include a lower layer of aluminum, copper, or alloys thereof, and an upper layer including at least one film of a metal and/or metallic alloy including nickel, palladium, or alloys thereof, and being deposited by an electroless chemical process.
Abstract:
A leadframe for semiconductor devices, including a region which is adapted to support a semiconductor device and a plurality of leads which are arranged so as to be directed toward the region, for mutual connection, by connecting wires connecting the leads and the semiconductor device. The leads include leads having at least two different lengths for the connection of connecting wires having different diameters.
Abstract:
A protective envelope, made of a plastics material for enclosing a semiconductor integrated circuit, includes a flattened parallelepiped body having a sidewall formed of first and second portions set to converge toward each other. The envelope also includes a lead frame embedded in the body and bearing the integrated circuit, the lead frame having a section bent to form a baffle plate orientated toward the first sidewall portion. Advantageously, the bent section of the lead frame has a plane end edge extending parallel to the first sidewall portion at a spacing therefrom.