Abstract:
This patent specification relates to methods and systems that can detect over cycling conditions that exist in an HVAC system. The over cycling condition can be caused by overheating of a forced air heating system or furnace of the HVAC system control. When the furnace overheats, a thermally actuated limit switch within the furnace may cut off power to a heat generation apparatus. The limit switch can reconnect the power to the heat generation apparatus after it has cooled down, at which point the thermostat control system may issue another heating call to continue heating the enclosure so that it reaches the desired temperature. If the overheat condition persist, then the thermally actuated switch will cut power, resulting in repeated power cycling. The detection system and methods can monitor these power loss events and use them as data points for determining whether an alert condition exists within the HVAC system.
Abstract:
A thermostat may include a plurality of heat-generating components; a plurality of first temperature sensors, each of the plurality of first temperature sensors being disposed next to a corresponding one of the plurality of heat-generating components; a second temperature sensor that is disposed away from the plurality of heat-generating components; and a memory device storing a coefficient matrix. The thermostat may also include one or more processors that combine a plurality of inputs to calculate an ambient temperature for an enclosure in which the thermostat is installed, the plurality of inputs including readings from the plurality of first temperature sensors, readings from the second temperature sensor, and the coefficient matrix.
Abstract:
A method of preconditioning an enclosure includes providing a thermostat and computing a set of preconditioning criteria information (PCI) with the thermostat. The computed PCI is typically representative of time and ambient temperature conditions for which preconditioning should be performed. The PCI may be stored in memory and used to compare against a current time and current ambient temperature condition of the enclosure to determine whether to enter the thermostat into a preconditioning state. If a determination is made that the PCI criteria are satisfied, the thermostat may be entered into the preconditioning state to heat or cool the enclosure. One or more of these processes may be performed while a processor of the thermostat is in a relatively high power mode or relatively low power mode.
Abstract:
A deivce may include a user interface configured to display at least a first graphical display and a second graphical display, a first proximity sensor having a first responsive range, and a second proximity sensor having a second responsive range. A processing system may be programmed to control the user interface by receiving an indication of a user presence within the second responsive range from the second proximity sensor while not receiving an indication of a user presence within the first responsive range from the first proximity sensor and causing the user interface to display the second graphical display. The processing system may also be programmed to receive an indication of a user presence within the first responsive range from the first proximity sensor and an indication of the user presence within the second responsive range from the second proximity sensor and cause the user interface to transition from the second graphical display to the first graphical display.
Abstract:
A thermostat may include a user interface having a first operating mode and a second operating mode, and a first proximity sensor configured to detect a user presence within a first range, the first proximity sensor comprising a plurality of channels comprising a left channel and a right channel, the right channel producing a response when a user presence is detected to the right of the thermostat, and the left channel producing a response when a user presence is detected to the left of the thermostat. A processing system may be programmed to receive an indication of a user presence within the first range from the first proximity sensor, the indication of the user presence being associated with responses from a plurality of the channels of the first proximity detector, and determine a motion signature based on the responses from the plurality of the channels of the first proximity detector. A processing system may also be programmed to process the determined motion signature to determine the presence of a condition warranting user interface entry into the second mode from the first mode, responsive to determining the presence of the conditions, cause the user interface to transition from the first operating mode to the second operating mode based on the determined motion signature.
Abstract:
This patent specification relates to methods and systems that can detect over cycling conditions that exist in an HVAC system. The over cycling condition can be caused by overheating of a forced air heating system or furnace of the HVAC system control. When the furnace overheats, a thermally actuated limit switch within the furnace may cut off power to a heat generation apparatus. The limit switch can reconnect the power to the heat generation apparatus after it has cooled down, at which point the thermostat control system may issue another heating call to continue heating the enclosure so that it reaches the desired temperature. If the overheat condition persist, then the thermally actuated switch will cut power, resulting in repeated power cycling. The detection system and methods can monitor these power loss events and use them as data points for determining whether an alert condition exists within the HVAC system.
Abstract:
A thermostat may include a user interface configured to display at least a first graphical display and a second graphical display, a first proximity sensor having a first responsive range, and a second proximity sensor having a second responsive range. A processing system may be programmed to control the user interface by receiving an indication of a user presence within the second responsive range from the second proximity sensor while not receiving an indication of a user presence within the first responsive range from the first proximity sensor and causing the user interface to display the second graphical display. The processing system may also be programmed to receive an indication of a user presence within the first responsive range from the first proximity sensor and an indication of the user presence within the second responsive range from the second proximity sensor and cause the user interface to transition from the second graphical display to the first graphical display.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information, including one or more of electronically stored rules, parameters, and instructions, to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers employ feedback information to continuously adjust the electronically stored parameters and rules in order to minimize the number of incorrect inferences with respect to the presence or absence of the one or more entities and in order to maximize the efficiency by which various types of systems controlled by the intelligent controllers carry out selected operational modes.