摘要:
A micromechanical pumping system is formed on a substrate surface. The pumping system uses a pumping element which pumps a fluid through valves which move in a plane substantially parallel to the substrate surface. An electromagnetic actuating mechanism may also be fabricated on the surface of the substrate. Magnetic flux produced by a coil around a permeable core may be coupled to a permeable member affixed to a pumping element. The permeable member and pumping element may be configured to move in a plane parallel to the substrate. The electromagnetic actuating mechanism gives the pumping system a large throw and substantial force, such that the fluid pumped by the pumping system may be pumped through a transdermal cannula to deliver a therapeutic substance to the tissue underlying the skin of a patient.
摘要:
A micromechanical pumping system is formed on a substrate surface. The pumping system uses a pumping element which pumps a fluid through valves which move in a plane substantially parallel to the substrate surface. An electromagnetic actuating mechanism may also be fabricated on the surface of the substrate. Magnetic flux produced by a coil around a permeable core may be coupled to a permeable member affixed to a pumping element. The permeable member and pumping element may be configured to move in a plane parallel to the substrate. The electromagnetic actuating mechanism gives the pumping system a large throw and substantial force, such that the fluid pumped by the pumping system may be pumped through a transdermal cannula to deliver a therapeutic substance to the tissue underlying the skin of a patient.
摘要:
A separated MEMS thermal actuator is disclosed which is largely insensitive to creep in the cantilevered beams of the thermal actuator. In the separated MEMS thermal actuator, a inlaid cantilevered drive beam formed in the same plane, but separated from a passive beam by a small gap. Because the inlaid cantilevered drive beam and the passive beam are not directly coupled, any changes in the quiescent position of the inlaid cantilevered drive beam may not be transmitted to the passive beam, if the magnitude of the changes are less than the size of the gap.
摘要:
A separated MEMS thermal actuator is disclosed which is largely insensitive to creep in the cantilevered beams of the thermal actuator. In the separated MEMS thermal actuator, a inlaid cantilevered drive beam formed in the same plane, but separated from a passive beam by a small gap. Because the inlaid cantilevered drive beam and the passive beam are not directly coupled, any changes in the quiescent position of the inlaid cantilevered drive beam may not be transmitted to the passive beam, if the magnitude of the changes are less than the size of the gap.
摘要:
A separated MEMS thermal actuator is disclosed which is largely insensitive to creep in the cantilevered beams of the thermal actuator. In the separated MEMS thermal actuator, a inlaid cantilevered drive beam formed in the same plane, but separated from a passive beam by a small gap. Because the inlaid cantilevered drive beam and the passive beam are not directly coupled, any changes in the quiescent position of the inlaid cantilevered drive beam may not be transmitted to the passive beam, if the magnitude of the changes are less than the size of the gap.
摘要:
A separated MEMS thermal actuator is disclosed which is largely insensitive to creep in the cantilevered beams of the thermal actuator. In the separated MEMS thermal actuator, a inlaid cantilevered drive beam formed in the same plane, but separated from a passive beam by a small gap. Because the inlaid cantilevered drive beam and the passive beam are not directly coupled, any changes in the quiescent position of the inlaid cantilevered drive beam may not be transmitted to the passive beam, if the magnitude of the changes are less than the size of the gap.
摘要:
A MEMS switch device is made using a gold alloy as the switch contact material. The increased mechanical hardness of the alloy compared to the pure gold prevents the contacts of the switch from welding together. A scrubbing action which occurs when the switch closes may allow the contact surfaces to come to rest where their surfaces are complementary, thus resulting in higher contact area and low contact resistance, despite the higher sheet resistance of the gold alloy material relative to the pure gold material.
摘要:
A material for forming a conductive structure for a MEMS device is described, which is an alloy containing about 0.01% manganese and the remainder nickel. Data shows that the alloy possesses advantageous mechanical and electrical properties. In particular, the sheet resistance of the alloy is actually lower than the sheet resistance of the pure metal. In addition, the alloy may have superior creep and higher recrystallization temperature than the pure metal. It is hypothesized that these advantageous material properties are a result of the larger grain structure existing in the NiMn alloy film compared to the pure nickel metal film. These properties may make the alloy appropriate for applications such as MEMS thermal electrical switches for telecommunications applications.
摘要:
A method for providing access to a feature on a device wafer, and located outside an encapsulation region is described. The method includes forming a cavity in the lid wafer, aligning the lid wafer with the device wafer so that the cavity is located substantially above the feature, and removing material substantially uniformly from the bottom surface of the lid wafer, until an aperture is formed at the cavity, over the feature on the device wafer. By removing material from the lid wafer in a substantially uniform manner, difficulties with the prior art procedure of saw cutting, such as alignment and debris generation, are avoided.
摘要:
A material for forming a conductive structure for a micromechanical current-driven device is described, which is an alloy containing about 0.025% manganese and the remainder nickel. Data shows that the alloy possesses advantageous mechanical and electrical properties. In particular, the sheet resistance of the alloy is actually lower and more stable than the sheet resistance of the pure metal. Accordingly, when used for conductive leads in a photonic device, the leads using the NiMn alloy may provide current to heat the photonic device while generating less heat within the leads themselves, and a more stable output.