摘要:
Disclosed are embodiments of a semiconductor structure having a contact-level air gap within the interlayer dielectrics above a semiconductor device in order to minimize parasitic capacitances (e.g., contact-to-contact capacitance, contact-to-diffusion region capacitance, gate-to-contact capacitance, gate-to-diffusion region capacitance, etc.). Specifically, the structure can comprise a semiconductor device on a substrate and at least three dielectric layers stacked above the semiconductor device. An air gap is positioned with the second dielectric layer aligned above the semiconductor device and extending vertically from the first dielectric layer to the third dielectric layer. Also disclosed are embodiments of a method of forming such a semiconductor structure using a self-assembly approach.
摘要:
Disclosed are embodiments of a semiconductor structure having a contact-level air gap within the interlayer dielectrics above a semiconductor device in order to minimize parasitic capacitances (e.g., contact-to-contact capacitance, contact-to-diffusion region capacitance, gate-to-contact capacitance, gate-to-diffusion region capacitance, etc.). Specifically, the structure can comprise a semiconductor device on a substrate and at least three dielectric layers stacked above the semiconductor device. An air gap is positioned with the second dielectric layer aligned above the semiconductor device and extending vertically from the first dielectric layer to the third dielectric layer. Also disclosed are embodiments of a method of forming such a semiconductor structure using a self-assembly approach.
摘要:
A semiconductor chip including a substrate; a dielectric layer over the substrate; a gate within the dielectric layer, the gate including a sidewall; a contact contacting a portion of the gate and a portion of the sidewall; and a sealed air gap between the sidewall, the dielectric layer and the contact.
摘要:
A semiconductor chip, including a substrate; a dielectric layer over the substrate; a gate within the dielectric layer, the gate including a sidewall; a source and a drain in the substrate adjacent to the gate; a tapered contact contacting a portion of one of the source or the drain; and a sealed air gap between the sidewall and the contact.
摘要:
A semiconductor chip including a substrate; a dielectric layer over the substrate; a gate within the dielectric layer, the gate including a sidewall; a contact contacting a portion of the gate and a portion of the sidewall; and a sealed air gap between the sidewall, the dielectric layer and the contact.
摘要:
A method for forming structure aligned with features underlying an opaque layer is provided for an interconnect structure, such as an integrated circuit. In one embodiment, the method includes forming an opaque layer over a first layer, the first layer having a surface topography that maps to at least one feature therein, wherein the opaque layer is formed such that the surface topography is visible over the opaque layer. A second feature is positioned and formed in the opaque layer by reference to such surface topography.
摘要:
An exemplary method lines the sidewalls of a first opening with a sacrificial material and then fills the first opening with a metallic conductor in a manner such that the metallic conductor contacts the substrate. Next, the method selectively removes the sacrificial material, to create at least one “second” opening along the metallic conductor within the first opening. The method selectively removes portions of the first insulator layer through the second opening to leave at least one air gap between the metallic conductor and the first insulator layer in the lower region of the second opening.
摘要:
A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
摘要:
A high programming efficiency electrical fuse is provided utilizing a dual damascene structure located atop a metal layer. The dual damascene structure includes a patterned dielectric material having a line opening located above and connected to an underlying via opening. The via opening is located atop and is connected to the metal layer. The dual damascene structure also includes a conductive feature within the line opening and the via opening. Dielectric spacers are also present within the line opening and the via opening. The dielectric spacers are present on vertical sidewalls of the patterned dielectric material and separate the conductive feature from the patterned dielectric material. The presence of the dielectric spacers within the line opening and the via opening reduces the area in which the conductive feature is formed. As such, a high programming efficiency electrical fuse is provided in which space is saved.
摘要:
A stack of a first metal line and a first dielectric cap material portion is formed within a line trench of first dielectric material layer. A second dielectric material layer is formed thereafter. A line trench extending between the top surface and the bottom surface of the second dielectric material layer is patterned. A photoresist layer is applied over the second dielectric material layer and patterned with a via pattern. An underlying portion of the first dielectric cap material is removed by an etch selective to the dielectric materials of the first and second dielectric material layer to form a via cavity that is laterally confined along the widthwise direction of the line trench and along the widthwise direction of the first metal line. A dual damascene line and via structure is formed, which includes a via structure that is laterally confined along two independent horizontal directions.