摘要:
Individual side-emitting LEDs are separately positioned in a waveguide, or mounted together on a flexible mount then positioned together in a waveguide. As a result, the gap between each LED and the waveguide can be small, which may improve coupling of light from the LED into the waveguide. Since the LEDs are separately connected to the waveguide, or mounted on a flexible mount, stress to individual LEDs resulting from changes in the shape of the waveguide is reduced.
摘要:
Very thin flash modules for cameras are described that do not appear as a point source of light to the illuminated subject. Therefore, the flash is less objectionable to the subject. In one embodiment, the light emitting surface area is about 5 mm×10 mm. Low profile, side-emitting LEDs optically coupled to solid light guides enable the flash module to be thinner than 2 mm. The flash module may also be continuously energized for video recording. The module is particularly useful for cell phone cameras and other thin cameras.
摘要:
Individual side-emitting LEDs are separately positioned in a waveguide, or mounted together on a flexible mount then positioned together in a waveguide. As a result, the gap between each LED and the waveguide can be small, which may improve coupling of light from the LED into the waveguide. Since the LEDs are separately connected to the waveguide, or mounted on a flexible mount, stress to individual LEDs resulting from changes in the shape of the waveguide is reduced.
摘要:
Very thin flash modules for cameras are described that do not appear as a point source of light to the illuminated subject. Therefore, the flash is less objectionable to the subject. In one embodiment, the light emitting surface area is about 5 mm×10 mm. Low profile, side-emitting LEDs optically coupled to solid light guides enable the flash module to be thinner than 2 mm. The flash module may also be continuously energized for video recording. The module is particularly useful for cell phone cameras and other thin cameras.
摘要:
In an LCD, a backlight having red, green, and blue LEDs is controlled to generate monochromatic light (e,g., blue) during a portion of a cycle, such as an image frame cycle. During another portion of the cycle, all the LEDs are illuminated to create white light. The color filter in the LCD panel contains, for each white pixel, a first color (e.g., red) subpixel filter, a second color (e.g., green) subpixel filter, and a clear subpixel area for passing white light and the monochromatic. The liquid crystal layer shutters are controlled to pass from 0-100% of the light for their associated subpixels to create a color image. With proper control of the shutters, any desired color of each white pixel can be achieved during the cycle. By converting one color filter to a clear area, the transmission efficiency of the display is greatly increased.
摘要:
A white light LED for use in backlighting or otherwise illuminating an LCD is described where the white light LED comprises a blue LED over which is affixed a preformed red phosphor platelet and a preformed green phosphor platelet. In one embodiment, to form a platelet, a controlled amount of phosphor powder is placed in a mold and heated under pressure to sinter the grains together. The platelet can be made very smooth on all surfaces. A UV LED may also be used in conjunction with red, green, and blue phosphor plates. The LED dies vary in color and brightness and are binned in accordance with their light output characteristics. Phosphor plates with different characteristics are matched to the binned LEDs to create white light LEDs with a consistent white point for use in backlights for liquid crystal displays.
摘要:
Low profile, side-emitting LEDs are described that generate white light, where all light is emitted within a relatively narrow angle generally parallel to the surface of the light-generating active layer. The LEDs enable the creation of very thin backlights for backlighting an LCD. In one embodiment, the LED emits blue light and is a flip chip with the n and p electrodes on the same side of the LED. Separately from the LED, a transparent wafer has deposited on it a red and green phosphor layer. The phosphor color temperature emission is tested, and the color temperatures vs. positions along the wafer are mapped. A reflector is formed over the transparent wafer. The transparent wafer is singulated, and the phosphor/window dice are matched with the blue LEDs to achieve a target white light color temperature. The phosphor/window is then affixed to the LED.
摘要:
High power white light LEDs are distributed within a thin reflective cavity. The cavity depth may be less than 3 cm and, in one embodiment, is about 1 cm. A light output surface of the cavity is a flat reflector with many small openings. A small plastic lens is positioned over each opening for causing the light emitted from each opening to form a cone of light between approximately 50-75 degrees. Alternatively, each hole may be shaped to be a truncated cone to control the dispersion. The light emitted by the LEDs is mixed in the cavity by reflecting off all six reflective walls of the cavity. The light will ultimately escape through the many holes, forming a relatively uniform pattern of light on a surface to be illuminated by the luminaire.
摘要:
Low profile, side-emitting LEDs are described that generate white light, where all light is emitted within a relatively narrow angle generally parallel to the surface of the light-generating active layer. The LEDs enable the creation of very thin backlights for backlighting an LCD. In one embodiment, the LED emits blue light and is a flip chip with the n and p electrodes on the same side of the LED. Separately from the LED, a transparent wafer has deposited on it a red and green phosphor layer. The phosphor color temperature emission is tested, and the color temperatures vs. positions along the wafer are mapped. A reflector is formed over the transparent wafer. The transparent wafer is singulated, and the phosphor/window dice are matched with the blue LEDs to achieve a target white light color temperature. The phosphor/window is then affixed to the LED.
摘要:
Amber light LEDs have a higher luminance than red light LEDs. A vast majority of images displayed on television consists of colors that can be created using amber, green and blue components, with only a small percentage of red. In one embodiment of the present invention, the typically red primary light source in a projection display system is augmented with an amber light source. Green and blue primary light sources are also provided. All the light sources are high power LEDs. The particular mixture of the red and amber light is accomplished by varying the duty cycles of the red LEDs and the amber LEDs. If the RGB image to be displayed can be created using a higher percentage of amber light and a lower percentage of red light, the duty cycle of the amber LEDs is increased while the duty cycle of the red LEDs is decreased. Light/pixel modulators for creating the full color image from the three primary light sources are controlled to compensate for the variable amber/red mixture. This technique improves the efficiency of the projection system and generates less heat. A further increase in luminance can be achieved by controlling the light mixture from green and cyan LEDs as a primary light source and/or by controlling the light mixture from blue and blue-cyan LEDs as a primary light source.