Magnetically anisotropic binder-free films containing discrete hexaferrite nanoplatelets

    公开(公告)号:US11295882B1

    公开(公告)日:2022-04-05

    申请号:US16592477

    申请日:2019-10-03

    Abstract: Some variations provide a magnetically anisotropic structure comprising a hexaferrite film disposed on a substrate, wherein the hexaferrite film contains a plurality of discrete and aligned magnetic hexaferrite particles, wherein the hexaferrite film is characterized by an average film thickness from about 1 micron to about 500 microns, and wherein the hexaferrite film contains less than 2 wt % organic matter. The hexaferrite film does not require a binder. Discrete particles are not sintered or annealed together because the maximum processing temperature to fabricate the structure is 500° C. or less, such as 250° C. or less. The magnetic hexaferrite particles may contain barium hexaferrite (BaFe12O19) and/or strontium hexaferrite (SrFe12O19). The hexaferrite film may be characterized by a remanence-to-saturation magnetization ratio of at least 0.7. Methods of making and using the magnetically anisotropic structure are also described.

    Dissolving droplet microfluidic particle assembly devices and methods, and particle assemblies obtained therefrom

    公开(公告)号:US11167287B2

    公开(公告)日:2021-11-09

    申请号:US16411058

    申请日:2019-05-13

    Abstract: Some variations provide a device for assembling a plurality of particles into particle assemblies, comprising: (a) a microfluidic droplet-generating region; (b) a first inlet to the droplet-generating region, configured to feed a first fluid containing particles and a solvent for the particles; (c) a second inlet to the droplet-generating region, configured to feed a second fluid that is not fully miscible with the first fluid; (d) a droplet outlet from the droplet-generating region, configured to withdraw droplets of the first fluid dispersed in the second fluid; and (e) a droplet-dissolving region configured to remove solvent from the droplets, thereby forming particle assemblies. Some variations also provide an assembly of nanoparticles, wherein the assembly has a volume from 1 μm3 to 1 mm3, a packing fraction from 20% to 100%, and/or an average relative surface roughness less than 1%, wherein the assembly is not disposed on a substrate.

    SELF-SANITIZING WAVEGUIDING SURFACES
    3.
    发明申请

    公开(公告)号:US20180236113A1

    公开(公告)日:2018-08-23

    申请号:US15870082

    申请日:2018-01-12

    Abstract: A self-sanitizing surface structure configured to selectively refract light, a method of fabricating a self-sanitizing surface configured to selectively refract light, and a method of decontaminating a surface using selectively refracted light. A waveguide including a support layer below a propagating layer is positioned over a substrate as a self-sanitizing layer. In the absence of a contaminant or residue on the waveguide, UV light injected into the propagating layer is constrained within the propagating layer due to total internal reflection. When a residue is present on the self-sanitizing surface structure, light may be selectively refracted at or near the interface with the residue along the side of the waveguide to destroy the residue. The self-sanitizing surface structure may be configured to refract a suitable amount of UV light in response to a particular type of residue or application.

    Methods for charge-titrating assembly of partially metallized nanoparticles, and metamaterials produced therefrom

    公开(公告)号:US10974959B1

    公开(公告)日:2021-04-13

    申请号:US16011834

    申请日:2018-06-19

    Abstract: Variations provide a metamaterial comprising a plurality of metamaterial repeat units containing a surface-patterned nanoparticle or microparticle that is coated with a metal in a surface pattern. The surface-patterned particle may include a dielectric material or a semiconductor material partially or fully coated with metal(s). In some embodiments, the surface-patterned particles are split ring resonators. Some variations provide a method of making a metamaterial, the method comprising: metallizing surfaces of particles, wherein particles are coated with metal(s) in a surface pattern; dispersing surface-patterned particles in a liquid solution at a starting pH; introducing a triggerable pH-control substance capable of generating an acid or base; and triggering the pH-control substance to generate an acid or base, thereby adjusting the solution pH to a titrated pH. The zeta potential is closer to zero at the titrated pH compared to the starting pH, causing the surface-patterned particles to assemble into a metamaterial.

    SELF-SANITIZING WAVEGUIDING SURFACES

    公开(公告)号:US20210023249A1

    公开(公告)日:2021-01-28

    申请号:US17036474

    申请日:2020-09-29

    Abstract: A self-sanitizing surface structure configured to selectively refract light, a method of fabricating a self-sanitizing surface configured to selectively refract light, and a method of decontaminating a surface using selectively refracted light. A waveguide including a support layer below a propagating layer is positioned over a substrate as a self-sanitizing layer. In the absence of a contaminant or residue on the waveguide, UV light injected into the propagating layer is constrained within the propagating layer due to total internal reflection. When a residue is present on the self-sanitizing surface structure, light may be selectively refracted at or near the interface with the residue along the side of the waveguide to destroy the residue. The self-sanitizing surface structure may be configured to refract a suitable amount of UV light in response to a particular type of residue or application.

    Methods for charge-titrating particle assembly, and structures produced therefrom

    公开(公告)号:US10822245B1

    公开(公告)日:2020-11-03

    申请号:US16155129

    申请日:2018-10-09

    Abstract: Methods to fabricate tightly packed arrays of nanoparticles are disclosed, without relying on organic ligands or a substrate. In some variations, a method of assembling particles into an array comprises dispersing particles in a liquid solution; introducing a triggerable pH-control substance capable of generating an acid or a base; and triggering the pH-control substance to generate an acid or a base within the liquid solution, thereby titrating the pH. During pH titration, the particle-surface charge magnitude is reduced, causing the particles to assemble into a particle array. Other variations provide a device for assembling particles into particle arrays, comprising a droplet-generating microfluidic region; a first-fluid inlet port; a second-fluid inlet port; a reaction microfluidic region, disposed in fluid communication with the droplet-generating microfluidic region; and a trigger source configured to trigger generation of an acid or a base from at least one pH-control substance contained within the reaction microfluidic region.

    Self-sanitizing waveguiding surfaces

    公开(公告)号:US10821198B2

    公开(公告)日:2020-11-03

    申请号:US15870082

    申请日:2018-01-12

    Abstract: A self-sanitizing surface structure configured to selectively refract light, a method of fabricating a self-sanitizing surface configured to selectively refract light, and a method of decontaminating a surface using selectively refracted light. A waveguide including a support layer below a propagating layer is positioned over a substrate as a self-sanitizing layer. In the absence of a contaminant or residue on the waveguide, UV light injected into the propagating layer is constrained within the propagating layer due to total internal reflection. When a residue is present on the self-sanitizing surface structure, light may be selectively refracted at or near the interface with the residue along the side of the waveguide to destroy the residue. The self-sanitizing surface structure may be configured to refract a suitable amount of UV light in response to a particular type of residue or application.

    Electrostatically driven assembly of nanoparticle materials into dense films

    公开(公告)号:US11219919B1

    公开(公告)日:2022-01-11

    申请号:US15795346

    申请日:2017-10-27

    Abstract: In some variations, the invention provides a method of depositing nanoparticles on a substrate, comprising: providing a substrate having a positive or negative surface charge; optionally depositing a polymer on the substrate, wherein the polymer has opposite charge polarity compared to the substrate; and simultaneously depositing first nanoparticles and second nanoparticles onto the substrate, wherein the first nanoparticles and the second nanoparticles have opposite charge polarities during depositing. Other variations provide a method of depositing a layer of nanoparticles on a substrate, the method comprising: providing a substrate having a positive or negative surface charge; providing faceted nanoparticles; preparing a nanoparticle solution containing the nanoparticles; and adjusting surface charge of the nanoparticles by changing the solution pH to reduce the magnitude of average zeta potential of the nanoparticles, thereby causing aggregation of the nanoparticles onto the substrate surface. Very high packing densities may be achieved with these methods.

Patent Agency Ranking