Abstract:
A method of diagnosing a malfunction in a dual clutch transmission may include determining, by a controller, a difference between a first input speed and a wheel speed output by reflecting a transmission gear ratio on the first input speed, and determining by the controller, a difference between a second input speed and a wheel speed output by reflecting the transmission gear ratio on the second input speed, when the difference between the first input speed and the wheel speed output by reflecting the transmission gear ratio on the first input speed is greater than a first reference value and the difference between the second input speed and the wheel speed output by reflecting the transmission gear ratio on the second input speed is equal to or smaller than a second reference value, diagnosing a first input shaft as having a transmission gear synchromesh failure.
Abstract:
A method of estimating transmission torque of a vehicle dry clutch may suitably estimate a variation in the characteristics of transmission torque relative to the actuator stroke of a dry clutch even during the driving of a vehicle, so that the dry clutch is more suitably controlled. In the method of estimating transmission torque of a dry clutch, a clutch is released so that a slip of the clutch occurs. If the slip of the clutch has occurred, the slip of the clutch is uniformly maintained. If the slip of the clutch is uniformly maintained, a relationship between a stroke of an actuator of the clutch and transmission torque of the clutch is determined from a relationship between the stroke of the actuator and torque of an engine in the uniformly maintained slip state.
Abstract:
A control method of a hybrid vehicle includes: confirming whether or not the driving mode of the vehicle is an EV mode when a controller senses shift of the position of a shift lever from the position R to the position D or from the position D to the position R; applying reverse-directional motor torque to a motor through the controller so that a motor speed is synchronized with the speed of an engagement-side clutch, as a result of confirmation of the driving mode, if the driving mode of the vehicle is the EV mode; and executing normal driving of the vehicle by applying regular-directional motor torque to the motor through the controller after synchronization of the motor speed with the engagement-side clutch speed.
Abstract:
A touch point adjusting method for a double clutch transmission, may include determining amounts of individual adjustment of first and second pressure plates and a center plate depending on temperature, determining an amount of final adjustment of a touch point in consideration of the amounts of the individual adjustment determined at the process of determining the amounts of the individual adjustment, and adjusting the touch point of a corresponding clutch based on the amount of the final adjustment of the touch point determined at the process of determining the amount of the final adjustment of the touch point.
Abstract:
A method of estimating a torque of a transmission clutch may include correcting an error by deducing an engine transient torque based on an engine angular velocity measured using a sensor, an engine static torque deduced using a data map, and a load torque depending on a driving load, deducing an engine angular velocity estimation value based on the engine static torque and the engine transient torque, and deducing a clutch torque estimation value depending on a slip in the transmission clutch from a difference between the engine angular velocity estimation value and the measured engine angular velocity.
Abstract:
A method of controlling an electrified vehicle includes determining whether stop control using a motor is possible in a case where a condition for entering stop assist control is satisfied, performing cooperative stop control using the motor and a hydraulic brake upon concluding that the stop control using the motor is possible, and performing independent stop control using the hydraulic brake upon concluding that the stop control using the motor is impossible.
Abstract:
Disclosed is a method of diagnosing a malfunction in a dual clutch transmission (DCT) attributable to a gear synchromesh failure, without an output shaft speed sensor. The method includes: calculating, a difference (referred to as a first difference) between a first input shaft speed and the product of a wheel speed and a first gear ratio; a difference (referred to as a second difference) between a second input shaft speed and the product of a wheel speed and a second gear ratio; diagnosing a first input shaft as having a transmission gear synchromesh failure when the first difference is greater than a first reference value and the second difference is equal to or smaller than a second reference value; and performing control such that a gear shifting operation is performed using only a second input shaft when the first input shaft is diagnosed as having a transmission gear synchromesh failure.
Abstract:
The present disclosure provides a driving control method for hybrid type vehicles with a DCT. The method includes: receiving the motor speed from a driving motor; when abnormality of the motor speed is detected, requesting driving of an engine and determining whether an engine clutch is engaged; if it is determined that the engine clutch is released, controlling a clutch of a current driving stage using a clutch torque higher than a transmission input torque; controlling the current driving stage to be a limp home driving stage set in advance to be in a limp home driven status.
Abstract:
A method for learning a touch point of a clutch in a Dual Clutch Transmission (DCT) vehicle includes a synchronization determination step, a drive shaft slip inducement step in which the controller induces a clutch of the drive shaft to slip, a non-drive shaft torque application step in which the controller applies torque to a clutch of the non-drive shaft, and a touch point learning step in which, while the speed of the non-drive input shaft follows the engine speed in the non-drive shaft torque application step, the controller searches for a certain point at which the speed of the non-drive input shaft changes and differs from the speed of the drive input shaft, and learns the point as the touch point of the clutch of the non-drive shaft.
Abstract:
A method of adjusting the transmission torque characteristics of a dry clutch may include carrying out adjustment based on learning using a T-S curve that indicates the relationship of the transmission torque to the actuator stroke of the dry clutch, a section of the T-S curve in which inclinations change discontinuously is removed, so that the controllability over the dry clutch is reliable and the feeling of shifting can be improved.