Abstract:
A method of calibrating an offset of a pressure sensor, by which an offset of a sensing value of a pressure sensor, which detects a pressure of hydrogen in a fuel cell system, is accurately calibrated. The method includes receiving, by a controller, a sensing value of a pressure sensor which detects a hydrogen pressure in a state where a hydrogen supply starts after a start of a fuel cell system; counting, by the controller, a time for which the sensing value of the pressure sensor increases from a first pressure P1 to a second pressure P2; calculating, by the controller, an offset value corresponding to the counted time by use of stored setting data; and calibrating, by the controller, a subsequent sensing value of the pressure sensor by the calculated offset value in real time when the offset value is calculated.
Abstract:
A control method of a motor rotation speed may include calculating a q-axis potential difference of a synchronous coordinate system for controlling a q-axis current of the synchronous coordinate system based on a target rotation speed of a motor and a measured rotation speed value of the speed sensor, calculating a voltage command of the synchronous coordinate system based on the calculated q-axis potential difference of the synchronous coordinate system, and controlling an inverter connected to the motor according to the calculated voltage command of the synchronous coordinate system.
Abstract:
A method for controlling a startup of a fuel cell system is provided. The method includes comparing a voltage generated in a fuel cell stack when hydrogen is supplied to a fuel electrode of the fuel cell stack for a set period of time with a first reference voltage. A voltage of a unit cell of the fuel cell stack is compared with a second reference voltage for load connection when the voltage generated in the fuel cell stack is higher than the first reference voltage. A load is connected to the fuel cell stack when the voltage of the unit cell of the fuel cell stack is higher than the second reference voltage for load connection.
Abstract:
A safety apparatus uses a fuel cell and a high voltage battery as a power source, and includes: a first voltage sensor that measures a voltage of a positive side of a voltage bus; a second voltage sensor that measures a voltage of a negative side of the voltage bus; and a controller that determines an electrical insulation between the positive side of the voltage bus and the electrical chassis based on the voltage of the positive side of the voltage bus and determines an electrical insulation between the negative side of the voltage bus and the electrical chassis based on the voltage of the negative side of the voltage bus.
Abstract:
A driving control system and method of a fuel cell system are provided. The driving control method includes determining, by a controller, when a fuel cell stack is in a water shortage, based on an oversupply of air to the fuel cell stack or a deterioration of the fuel cell stack. A diagnostic level is then assigned to the fuel cell system and at least one recovery driving mode that corresponds to the assigned diagnostic level is performed.
Abstract:
The present invention provides a relative humidity and condensed water estimator for a fuel cell and a method for controlling condensed water drain using the same. Here, the relative humidity and condensed water estimator is utilized in control of the fuel cell system involving control of anode condensed water drain by outputting at least two of signals comprising air-side relative humidity, hydrogen-side relative humidity, air-side instantaneous or cumulative condensed water, hydrogen-side instantaneous or cumulative condensed water, instantaneous and cumulative condensed water of the humidifier, membrane water contents, catalyst layer oxygen partial pressure, catalyst layer hydrogen partial pressure, stack or cell voltage, air-side catalyst layer relative humidity, hydrogen-side catalyst layer relative humidity, oxygen supercharging ratio, hydrogen supercharging ratio, residual water in a stack, and residual water in a humidifier.
Abstract:
The present invention provides a relative humidity and condensed water estimator for a fuel cell and a method for controlling condensed water drain using the same. Here, the relative humidity and condensed water estimator is utilized in control of the fuel cell system involving control of anode condensed water drain by outputting at least two of signals comprising air-side relative humidity, hydrogen-side relative humidity, air-side instantaneous or cumulative condensed water, hydrogen-side instantaneous or cumulative condensed water, instantaneous and cumulative condensed water of the humidifier, membrane water contents, catalyst layer oxygen partial pressure, catalyst layer hydrogen partial pressure, stack or cell voltage, air-side catalyst layer relative humidity, hydrogen-side catalyst layer relative humidity, oxygen supercharging ratio, hydrogen supercharging ratio, residual water in a stack, and residual water in a humidifier.
Abstract:
A fuel cell system and a method of controlling the fuel cell system are provided. The fuel cell system includes at least one bypass valve that is disposed between a passage in an inlet of a fuel cell stack and a bypass passage that is branched from the passage within the inlet and that is connected to a discharge port of the fuel cell stack. In addition, a controller bypasses air supplied from an air blower to the discharge port by adjusting an opening degree of the bypass valve.
Abstract:
A method and system for controlling a drive motor are provided. The method includes determining whether a vehicle is at a sudden braking event by detecting a brake depth of a brake pedal and calculating a depth rate of the brake pedal based on the detected brake depth. In addition, the drive motor is operated to reduce regenerative braking torque when the vehicle is determined to be at the sudden braking event.
Abstract:
Disclosed is a method of controlling an operation mode of a fuel cell in a fuel cell vehicle wherein, (a) when a driver-demanded torque is lower than a first torque, and a current state of charge (SOC) in a battery is higher than a first SOC, the operation mode of the fuel cell is converted to a stop mode, and (b) when the driver-demanded torque is higher than a second torque, or the current SOC in the battery is lower than a second SOC, the operation mode is converted to a start mode, wherein the second torque is higher than the first torque and the second SOC is lower than the first SOC.