摘要:
An insulating film having Hf and O is formed over a semiconductor substrate. A cap film having oxygen and titanium as constituent elements is formed over the insulating film. The insulating film and cap film are thermally treated in a nitrogen gas or noble gas to diffuse titanium in the cap film into the insulating film to form a gate insulating film. A gate electrode film is formed over the gate insulating film.
摘要:
A semiconductor device manufacture method has the steps of: (a) forming an interface layer of SiO or SiON on the surface of an active region of a silicon substrate; (b) forming a high dielectric constant gate insulating film such as HfSiON having a dielectric constant higher than that of silicon oxide, above the interface layer; (c) forming a gate electrode of polysilicon above the high dielectric constant gate insulating film; (d) passivating the substrate surface at least before or after the high dielectric constant gate insulating film is formed; (e) forming an insulated gate electrode structure by patterning at least the gate electrode and the high dielectric constant gate insulating film; and (f) forming source/drain regions in the active region on both sides of the insulated gate electrode structure. The semiconductor device has the high dielectric constant insulating film having a dielectric constant higher than that of silicon oxide.
摘要:
A method for generating a multisided patch in which the expression form of each boundary curve and topology of the curve network can freely be set, curve formulae can be simply input, and high continuity. By inputting data of boundary curves to multisided patch generator via editing means which generates and edits curves, and blending sweep surfaces in two stages, a free-form surface is generated as a surface interpolating them. That is, data of a plurality of boundary curves is inputted to multisided patch generator, each given curve is swept by sweeping means along the curves intersecting it to generate surfaces, and the surfaces are blended by blending means in two stages, thereby generating a free-form surface. Since the surface formulae can be defined on the basis of the curve formulae of the boundaries, topology of the curve network and the descriptive form of each curve can freely be set, so that the boundary curve formulae of a multisided patch can be simply input by directly drawing the curve shapes on defined two-dimensional planes. In addition, geometric continuity of the generated surface is high because continuity of the given curves is high.
摘要:
In the method for fabricating a semiconductor device, a polysilicon film is patterned to form a gate electrode 16, and a high dielectric constant insulating film 14 on a silicon substrate 10 and a device isolation film 12 on both sides of the gate electrode 16 is removed by dry etching using plasmas of a mixed gas of a base protection gas which combines with silicon to form a protection layer for protecting the silicon substrate 10 and the device isolation film 12, and an etching gas for etching the high dielectric constant insulating film 14.
摘要:
A tight contact layer is disposed on a semiconductor substrate, the tight contact layer being made of one material selected from the group consisting of refractory metal, alloy of refractory metal, nitride of refractory metal, and siliconized nitride of refractory metal. An oxide surface layer is disposed on the surface of the tight contact layer, the oxide surface layer being made of oxide of material constituting the tight contact layer. A first conductive layer is disposed on the surface of the oxide surface layer, the first conductive layer being made of a platinum group or alloy which contains a platinum group. When a conductive layer made of metal such as a platinum group is formed on a tight contact layer, coverage and morphology can be prevented from being degraded.
摘要:
A tight contact layer is disposed on a semiconductor substrate, the tight contact layer being made of one material selected from the group consisting of refractory metal, alloy of refractory metal, nitride of refractory metal, and siliconized nitride of refractory metal. An oxide surface layer is disposed on the surface of the tight contact layer, the oxide surface layer being made of oxide of material constituting the tight contact layer. A first conductive layer is disposed on the surface of the oxide surface layer, the first conductive layer being made of a platinum group or alloy which contains a platinum group. When a conductive layer made of metal such as a platinum group is formed on a tight contact layer, coverage and morphology can be prevented from being degraded.
摘要:
A semiconductor device manufacture method has the steps of: (a) forming an interface layer of SiO or SiON on the surface of an active region of a silicon substrate; (b) forming a high dielectric constant gate insulating film such as HfSiON having a dielectric constant higher than that of silicon oxide, above the interface layer; (c) forming a gate electrode of polysilicon above the high dielectric constant gate insulating film; (d) passivating the substrate surface at least before or after the high dielectric constant gate insulating film is formed; (e) forming an insulated gate electrode structure by patterning at least the gate electrode and the high dielectric constant gate insulating film; and (f) forming source/drain regions in the active region on both sides of the insulated gate electrode structure. The semiconductor device has the high dielectric constant insulating film having a dielectric constant higher than that of silicon oxide.
摘要:
A semiconductor device has: a silicon substrate; a silicon oxide layer formed on the surface of the silicon substrate; a high dielectric constant insulating film including a first oxide layer formed above the silicon oxide layer and made of a high dielectric constant film having a dielectric constant higher than silicon oxide and a first nitride layer formed above the first oxide layer and made of nitride having an oxygen intercepting capability, or a high dielectric constant insulating film including a first oxide film formed on the silicon oxide layer, a second oxide layer formed on the first oxide layer and a third oxide layer formed on the second oxide layer, the first and third oxide layers having an oxygen diffusion coefficient smaller than the second oxide layer; and a gate electrode formed on the high dielectric constant insulating layer and made of oxidizable material.