摘要:
A method for forming substantially uniformly thick, thermally grown, silicon dioxide material on a silicon body independent of bon axis. A trench is formed in a surface of the silicon body, such trench having sidewalls disposed in different crystallographic planes, one of such planes being the crystallographic plane and another one of such planes being the plane. A substantially uniform layer of silicon nitride is formed on the sidewalls. The trench, with the with substantially uniform layer of silicon nitride, is subjected to a silicon oxidation environment with sidewalls in the plane being oxidized at a higher rate than sidewalls in the plane producing silicon dioxide on the silicon nitride layer having thickness over the plane greater than over the plane. The silicon dioxide is subjected to an etch to selectively remove silicon dioxide while leaving substantially un-etched silicon nitride to thereby remove portions of the silicon dioxide over the plane and to thereby expose underlying portions of the silicon nitride material while leaving portions of the silicon dioxide over the plane on underlying portions of the silicon nitride material. Exposed portions of the silicon nitride material are selectively removed to expose underlying portions of the sidewalls of the trench disposed in the plane while leaving substantially un-etched portions of the silicon nitride material disposed on sidewalls of the trench disposed in the plane. The structure is then subjected to an silicon oxidation environment to produce the substantially uniform silicon dioxide layer on the sidewalls of the trench.
摘要:
A method for forming substantially uniformly thick, thermally grown, silicon dioxide material on a silicon body independent of axis. A trench is formed in a surface of the silicon body, such trench having sidewalls disposed in different crystallographic planes, one of such planes being the crystallographic plane and another one of such planes being the plane. A substantially uniform layer of silicon nitride is formed on the sidewalls. The trench, with the substantially uniform layer of silicon nitride, is subjected to a silicon oxidation environment with sidewalls in the plane being oxidized at a higher rate than sidewalls in the plane producing silicon dioxide on the silicon nitride layer having thickness over the plane greater than over the plane. The silicon dioxide is subjected to an etch to selectively remove silicon dioxide while leaving substantially un-etched silicon nitride to thereby remove portions of the silicon dioxide over the plane and to thereby expose underlying portions of the silicon nitride material while leaving portions of the silicon dioxide over the plane on underlying portions of the silicon nitride material. Exposed portions of the silicon nitride material are selectively removed to expose underlying portions of the sidewalls of the trench disposed in the plane while leaving substantially un-etched portions of the silicon nitride material disposed on sidewalls of the trench disposed in the plane. The structure is then subjected to an silicon oxidation environment to produce the substantially uniform silicon dioxide layer on the sidewalls of the trench.
摘要:
A method of using at least two insulative layers to form the isolation collar of a trench device, and the device formed therefrom. The first layer is preferably an oxide (e.g., silicon dioxide 116) formed on the trench substrate sidewalls, and is formed through a TEOS, LOCOS, or combined TEOS/LOCOS process. Preferably, both the TEOS process and the LOCOS process are used to form the first layer. The second layer is preferably a silicon nitride layer (114) formed on the oxide layer. The multiple layers function as an isolation collar stack for the trench. The dopant penetration barrier properties of the second layer permit the dielectric collar stack to be used as a self aligned mask for subsequent buried plate (120) doping.
摘要:
A system and method of forming an electrical connection (142) to the interior of a deep trench (104) in an integrated circuit utilizing a low-angle dopant implantation (114) to create a self-aligned mask over the trench. The electrical connection preferably connects the interior plate (110) of a trench capacitor to a terminal of a vertical trench transistor. The low-angle implantation process, in combination with a low-aspect ratio mask structure, generally enables the doping of only a portion of a material overlying or in the trench. The material may then be subjected to a process step, such as oxidation, with selectivity between the doped and undoped regions. Another process step, such as an etch process, may then be used to remove a portion of the material (120) overlying or in the trench, leaving a self-aligned mask (122) covering a portion of the trench, and the remainder of the trench exposed for further processing. Alternatively, an etch process alone, with selectivity between the doped and undoped regions, may be used to create the mask. The self-aligned mask then allows for the removal of selective portions of the materials in the trench so that a vertical trench transistor and a buried strap may be formed on only one side of the trench.
摘要:
A method of forming a vertically-oriented device in an integrated circuit using a selective wet etch to remove only a part of the sidewalls in a deep trench, and the device formed therefrom. While a portion of the trench perimeter (e.g., isolation collar 304) is protected by a mask (e.g., polysilicon 318), the exposed portion is selectively wet etched to remove selected crystal planes from the exposed portion of the trench, leaving a flat substrate sidewall (324) with a single crystal plane. A single side vertical trench transistor may be formed on the flat sidewall. A vertical gate oxide (e.g. silicon dioxide 330) of the transistor formed on the single crystal plane is substantially uniform across the transistor channel, providing reduced chance of leakage and consistent threshold voltages from device to device. In addition, trench widening is substantially reduced, increasing the device to device isolation distance in a single sided buried strap junction device layout.
摘要:
A method for clearing an isolation collar from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A barrier material is deposited above a node conductor of the storage capacitor. A layer of silicon is deposited over the barrier material. Dopant ions are implanted at an angle into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
摘要:
A semiconductor device formed by a method for aligning a strap diffusion, in accordance with the invention, includes the steps of providing a trench in a substrate, the trench having a storage node formed therein including a buried strap on top of the storage node, and depositing a dopant rich material on the buried strap. A trench top dielectric is formed on the dopant rich material, and portions of the dopant rich material are removed above the trench top dielectric. Dopants are outdiffused from the dopant rich material into an adjacent region of the substrate to form the strap diffusion by forming a gate in an upper portion of the trench such that the strap diffusion is operatively disposed relative to the gate.
摘要:
A method for forming an oxide collar in a trench, in accordance with the present invention, includes forming a trench in a silicon substrate, and depositing and recessing a nitride liner in the trench to expose a portion of the silicon substrate on sidewalls of the trench. An oxide is deposited selective to the nitride liner on the portion of the silicon substrate. Residue oxide is removed from surfaces of the nitride liner to form a collar in the trench.
摘要:
A trench capacitor having a conductive pillar in a central region of a trench. A first plate of the capacitor includes the substrate in the lower portion of the trench and the conductive pillar. The capacitor dielectric is disposed over the conductive pillar and the sidewalls of the trench lower portion. A second plate of the capacitor is a conductive material disposed over the dielectric material. The conductive pillar increases the surface area of the capacitor plates, increasing the capacitance of the capacitor. A top portion of the conductive pillar may be hollow, further increasing the surface area of the capacitor plates.