摘要:
A resistive random access memory and a method for fabricating the same are provided. The method includes providing a bottom electrode formed on a substrate. A metal oxide layer is formed on the bottom electrode. An oxygen atom gettering layer is formed on the metal oxide layer. A top electrode is formed on the oxygen atom gettering layer. The previous mentioned structure is subjected to a thermal treatment, driving the oxygen atoms of the metal oxide layer to migrate into and react with the oxygen atom gettering layer, thus leaving a plurality of oxygen vacancies of the metal oxide layer.
摘要:
A resistive random access memory and a method for fabricating the same are provided. The method includes providing a bottom electrode formed on a substrate. A metal oxide layer is formed on the bottom electrode. An oxygen atom gettering layer is formed on the metal oxide layer. A top electrode is formed on the oxygen atom gettering layer. The previous mentioned structure is subjected to a thermal treatment, driving the oxygen atoms of the metal oxide layer to migrate into and react with the oxygen atom gettering layer, thus leaving a plurality of oxygen vacancies of the metal oxide layer.
摘要:
A method for forming a capacitor in a dynamic random access memory, comprising steps of: providing a semiconductor substrate having at least a transistor, whereon an interlayer dielectric layer having at least a first plug is formed so that the first plug is connected to the drain of the transistor; depositing an etching stop layer on the first plug and the interlayer dielectric layer; depositing a first insulating layer on the etching stop layer; forming at least a second plug on the first insulating layer and the etching stop layer so that the second plug is connected to the first plug; depositing a second insulating layer on the first insulating layer and the second plug; forming at least a mold cavity in the second insulating layer so that the aperture of the mold cavity is larger than the diameter of the second plug and there is a deviation between the mold cavity and the second plug; removing the first insulating layer in the mold cavity until the etching stop layer; depositing a first electrode layer to cover the second insulating layer, a sidewall portion of the mold cavity, the second plug and the etching stop layer; removing the second insulating layer so that the first electrode layer forms a single open-ended cavity; and depositing a dielectric layer and a second electrode layer.
摘要:
A method of manufacturing through-silicon-via (TSV) and a TSV structure are provided. The TSV structure includes a silicon substrate, an annular capacitor, a conductive through-via, a layer of low-k material, and a bump. The annular capacitor is within the silicon substrate and constituted of a first conductive layer, a capacitor dielectric layer, and a second conductive layer from the inside to the outside. The conductive through-via is disposed in the silicon substrate surrounded by the annular capacitor, and the layer of low-k material is between the annular capacitor and the conductive through-via. The bump is in touch with the conductive through-via for bonding other chip.
摘要:
A resistance memory cell including a variable resistance layer is provided. The variable resistance layer includes at least one dominant resistance layer and at least one auxiliary resistance layer. The dominant resistance layer(s) and the auxiliary resistance layer(s) in totality form a closed ion exchange system, the exchanged ions are comparably mobile in each of the dominant resistance layer(s) and the auxiliary resistance layer(s), and the maximum resistance of the at least one dominant resistance layer is higher than that of the at least one auxiliary resistance layer.
摘要:
A resistance random access memory including a first electrode layer, a second electrode layer, and a stacked structure is provided. The stacked structure includes a HfZrON layer and a ZrON layer and is located between the first electrode layer and the second electrode layer. In addition, the disclosure further provides a method of fabricating a resistance random access memory.
摘要:
A method for forming a clear code mark that is independent of backend planarization by adding an extra exposing step to the normal photolithography process is described. A layer to be patterned is provided on a substrate. A photoresist layer is coated overlying the layer to be patterned. The photoresist layer is first exposed through a code mask and second exposed through a patterning mask. The photoresist layer is developed to form a photoresist mask having a code mark pattern from the code mask and a device pattern from the patterning mask. The layer to be patterned is etched away where it is not covered by the photoresist mask to form simultaneously device structures and a code mark in the fabrication of an integrated circuit device.
摘要:
Correction of overlay shift of an epitaxial silicon layer deposited on a semiconductor wafer, and of post-epitaxial silicon layers subsequently deposited, is disclosed. When an epitaxial silicon layer of a given thickness is deposited, the zero mark coordinates for the deposition are shifted relative to alignment marks on the wafer by a distance based on the thickness of the layer. The distance is preferably proportional to the thickness of the epi layer. This prevents overlay shift of the epi layer. For post-epitaxial silicon layers subsequently deposited, preferably except for the first post-epi layer, a clear out process is initially performed to maintain the alignment marks on the semiconductor wafer. In this way, overlay shift, or misalignment, of the post-epi layers is also prevented.