摘要:
An internal combustion engine control apparatus can reliably detect abnormality in a crank angle position signal to ensure a fail safe function upon occurrence of the abnormally. A fuel injection signal and an ignition signal is generated based on the result of cylinder identification performed by a cylinder identification part and the crank angle position of the crank angle position signal. An abnormality determination part determines whether the crank angle position signal is abnormal. The cylinder identification part includes a cylinder identification resetting part for resetting the current content of the cylinder identification performed by the cylinder identification part upon determination of abnormality. The cylinder identification resetting part includes a fuel injection and ignition signal stopping part for stopping the fuel injection signal and the ignition signal, and a cylinder identification information clearing part for clearing previous cylinder identification information earlier than the last crank angle position signal upon determination of abnormality.
摘要:
The present invention has: a crank signal vane in which teeth are provided on a circumference at predetermined crank angles, and a first missing tooth portion having one missing tooth and a second missing tooth portion having two missing teeth are established; a crank angle sensor for outputting a pulse shape crank signal pattern corresponding to the teeth; and an electronic control unit for calculating a crank signal period based on the crank signal pattern, computing a missing tooth identification value based on the calculated crank signal period; detecting the number of missing teeth based on the computed missing tooth identification value, detecting a crank angle reference position for cases in which the detected number of missing teeth is one or two, and identifying a cylinder group.
摘要:
A cylinder identifying apparatus has a generator which generates a cylinder discrimination signal, a generator which generates a crank angle position signal, and a control unit which obtains the number of detections of the crank angle position signal, the number of detections of the cylinder discrimination signal, the number of detections of the crank angle position signal at the time of detection of the cylinder discrimination signal, etc. The control unit sets a cylinder discrimination period B35° to B75° CA if the present reference crank position is a first-time detection result after startup, sets a cylinder discrimination period B75° to B75° CA if the present reference crank position is a second-time or some other subsequent detection result, obtains the number of detections of the cylinder discrimination signal, and identifies a cylinder on the basis of the number of pulse dropouts and the number of detections of the cylinder discrimination signal.
摘要:
An actuator for changing a relative position of at least an intake or exhaust camshaft, and a crank shaft; a cylinder identifying unit for performing cylinder identification in accordance with results detected by a crank angle sensor and a cam angle sensor; a valve timing detecting unit for detecting valve timing in accordance with the results detected by the crank angle sensor and the cam angle sensor; and an OCV for controlling the actuator based on a value detected by the valve timing detecting unit are provided. Control is performed at a neutral point by a valve timing controlling unit when the cylinder identification by the cylinder identifying unit is in an indefinite state.
摘要:
An estimation device for a cylinder intake air amount and an internal EGR rate in an internal combustion engine is provided which is capable of making an estimation with a high degree of accuracy in a small number of adaptation constants. The estimation device calculates a volumetric efficiency corresponding value and the internal EGR rate based on an exhaust efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of residual gas which is an exhaust gas after combustion remaining in the cylinder without being discharged from the cylinder to an exhaust pipe, and an intake efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of air coming into the cylinder from the intake pipe excluding the residual gas.
摘要:
A knock control apparatus includes: a knock sensor for detecting knock of an internal combustion engine; a signal processing section for calculating a knock intensity; and knock determination level setting sections: for calculating an average value of the knock intensity; for calculating, based on the average value, an overall variance of the knock intensity of an entirety of a frequency distribution, a higher variance of the knock intensity above the average value, and a lower variance of the knock intensity below the average value; for calculating a standard deviation of the knock intensity from the overall variance; for presetting a value allowing the frequency distribution of the knock intensity to be a predetermined confidence interval as a confidence coefficient; and for setting a sum of the average value and a value obtained by multiplying the standard deviation by the corrected confidence coefficient as a knock determination level.
摘要:
In throttle control, a throttle opening is set with sufficient control accuracy in accordance with the operating state of an engine despite variations in a throttle body and various kinds of sensors. A target effective opening area is calculated from a target amount of intake air, an atmospheric pressure, an intake pipe internal pressure and an intake air temperature by using a flow rate formula for a throttle type flow meter. A target throttle opening is calculated from a correlation map. An actual effective opening area is calculated from the amount of intake air, the atmospheric pressure, the intake pipe internal pressure, and the intake air temperature by using the above-mentioned flow rate formula, and a learning throttle opening is calculated from the correlation map. The target throttle opening is corrected by a throttle opening learning value calculated from a deviation between the target throttle opening and the learning throttle opening.
摘要:
A control apparatus for an internal combustion engine prevents variation of an air fuel ratio even upon introduction of purge air. A delay time occurring until the intake air detected, after having arrived at the combustion chamber through a surge tank, influences an air fuel ratio sensor, a delay time occurring until purge air containing evaporated fuel generated upon purging a canister, after having arrived at the combustion chamber through the surge tank, influences the air fuel ratio sensor, and a delay time occurring until fuel supplied by an injector, after having arrived at the combustion chamber, influences the air fuel ratio sensor, are represented by simplified physical models. A purge rate in the combustion chamber or in the neighborhood of the air fuel ratio sensor is calculated by using the physical models, and a purge air concentration and a fuel correction amount are calculated based on the purge rate thus obtained.
摘要:
An estimation device for a cylinder intake air amount in an internal combustion engine is obtained which can estimate an amount of air actually sucked into a cylinder with a high degree of accuracy by using a physical model of an intake system. A volumetric efficiency corresponding value is calculated based on an exhaust efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of residual gas which is an exhaust gas after combustion remaining in the cylinder without being discharged from the interior of the cylinder to an exhaust pipe, and an intake efficiency (a linear function of intake pipe internal pressure) which is an index indicating an amount of air coming into the cylinder from an intake pipe excluding the residual gas, whereby the estimation is carried out to a high degree of accuracy with a small number of adaptation constants.
摘要:
A control apparatus for an internal combustion engine includes: an abnormal combustion detection unit for detecting an abnormal combustion due to self-ignition occurring; a pre-ignition determination unit for detecting abnormal combustion occurrence timing based on abnormal combustion detection information to determine whether or not the abnormal combustion is the pre-ignition based on comparison between pre-ignition determination timing and the abnormal combustion occurrence timing; a heat-source pre-ignition determination unit for determining whether the pre-ignition is the heat-source pre-ignition or the compression pre-ignition based on comparison between the abnormal combustion occurrence timing set by the pre-ignition determination timing and heat-source pre-ignition determination timing; a first avoidance unit for avoiding the heat-source pre-ignition in a case where the pre-ignition is determined as the heat-source pre-ignition; and a second avoidance unit for avoiding the compression pre-ignition in a case where the pre-ignition is determined as the compression pre-ignition.