摘要:
Provided are a method of manufacturing a light-emitting element by which a light-emitting element (80) is manufactured through the following steps and a light-emitting element manufactured by employing the method. A light-emitting element layer (40) is formed on one face (32T) of a monocrystalline substrate (30A) for a light-emitting element. Next, the other face (32B) of the monocrystalline substrate (30A) for a light-emitting element is polished until a state where a vertical hole (34A) penetrates the monocrystalline substrate (30A) for a light-emitting element in its thickness direction is established. Next, a conductive material is filled into the vertical hole (34B) from the side of the vertical hole (34B) closer to an opening (36B) in the other face (32B) to form a conductive portion (50) that is continuous from a side closer to the light-emitting element layer (40) to the opening (36B) in the other face (32B).
摘要:
Provided are a crystalline film in which variations in the crystal axis angle after separation from a substrate for epitaxial growth have been eliminated, and various devices in which the properties thereof have been improved by including the crystalline film. And the crystalline film has a thickness of 300 μm or more and 10 mm or less and reformed region pattern is formed in an internal portion of the crystalline film.
摘要:
Provided are a method of manufacturing a light-emitting element by which a light-emitting element (80) is manufactured through the following steps and a light-emitting element manufactured by employing the method. A light-emitting element layer (40) is formed on one face (32T) of a monocrystalline substrate (30A) for a light-emitting element. Next, the other face (32B) of the monocrystalline substrate (30A) for a light-emitting element is polished until a state where a vertical hole (34A) penetrates the monocrystalline substrate (30A) for a light-emitting element in its thickness direction is established. Next, a conductive material is filled into the vertical hole (34B) from the side of the vertical hole (34B) closer to an opening (36B) in the other face (32B) to form a conductive portion (50) that is continuous from a side closer to the light-emitting element layer (40) to the opening (36B) in the other face (32B).
摘要:
Provided are an internally reformed substrate for epitaxial growth having an arbitrary warpage shape and/or an arbitrary warpage amount, an internally reformed substrate with a multilayer film using the internally reformed substrate for epitaxial growth, a semiconductor device, a bulk semiconductor substrate, and manufacturing methods therefor. The internally reformed substrate for epitaxial growth includes: a single crystal substrate; and a heat-denatured layer formed in an internal portion of the single crystal substrate by laser irradiation to the single crystal substrate.
摘要:
Provided are a single-crystal substrate for epitaxial growth on which a crystalline film may be formed with stress thereon being suppressed or eliminated, a single-crystal substrate having a crystalline film, a crystalline film, a method of producing a single-crystal substrate having a crystalline film, a method of producing a crystalline substrate, and an element producing method. The single-crystal substrate has a roughened surface formed on at least a partial region of a surface of the single-crystal substrate. And in order to obtain the single-crystal substrate having a crystalline film, a single-crystalline film is formed by epitaxial growth on a roughened-surface unformed surface on which the roughened surface is not formed, and a crystalline film having low crystallinity than the single-crystalline film is formed by epitaxial growth on a roughened-surface formed surface of the single-crystal substrate.
摘要:
In order to correct warpage resulting from the formation of a multilayer film, provided are a single crystal substrate which includes a heat-denatured layer provided in one of two regions including a first region and a second region obtained by bisecting the single crystal substrate in a thickness direction thereof, and which is warped convexly toward a side of a surface of the region provided with the heat-denatured layer, a manufacturing method for the single crystal substrate, a manufacturing method for a single crystal substrate with a multilayer film using the single crystal substrate, and an element manufacturing method using the manufacturing method for a single crystal substrate with a multilayer film.
摘要:
In order to correct warpage that occurs in formation of a multilayer film, provided are a single crystal substrate with a multilayer film, a manufacturing method therefor, and an element manufacturing method using the manufacturing method. The single crystal substrate with a multilayer film includes: a single crystal substrate (20); a multilayer film (30) including two or more layers that is formed on one surface of the single crystal substrate (20) and having a compressive stress; and a heat-denatured layer (22) provided, of two regions (20U, 20D) obtained by bisecting the single crystal substrate (20) in the thickness direction thereof, at least in the region (20D) on the side of the surface opposite to the one surface of the single crystal substrate (20) having the multilayer film (30) formed thereon.
摘要:
Provided are a single-crystal substrate for epitaxial growth on which a crystalline film may be formed with stress thereon being suppressed or eliminated, a single-crystal substrate having a crystalline film, a crystalline film, a method of producing a single-crystal substrate having a crystalline film, a method of producing a crystalline substrate, and an element producing method. The single-crystal substrate has a roughened surface formed on at least a partial region of a surface of the single-crystal substrate. And in order to obtain the single-crystal substrate having a crystalline film, a single-crystalline film is formed by epitaxial growth on a roughened-surface unformed surface on which the roughened surface is not formed, and a crystalline film having low crystallinity than the single-crystalline film is formed by epitaxial growth on a roughened-surface formed surface of the single-crystal substrate.
摘要:
Sapphire substrates are used chiefly for epitaxial growth of nitride semiconductor layers, to provide a sapphire substrate of which the shape and/or amount of warping can be controlled efficiently and precisely and of which substrate warping that occurs during layer formation can be suppressed and substrate warping behavior can be minimized, to provide nitride semiconductor layer growth bodies, nitride semiconductor devices, and nitride semiconductor bulk substrates using such substrates, and to provide a method of manufacturing these products. Reformed domain patterns are formed within a sapphire substrate and the warp shape and/or amount of warping of the sapphire substrate are controlled by means of multiphoton absorption by condensing and scanning a pulsed laser through a polished surface of the sapphire substrate. When nitride semiconductor layers are formed using sapphire substrates obtained by means of this invention, substrate warping during layer formation is suppressed and substrate warping behavior is minimized so that layer quality and uniformity are improved and the quality and yield of nitride semiconductor devices is increased.
摘要:
The present invention provides an intensity control device for a laser in a laser beam printer that produces a hard copy of image information by copy-processing a photosensitive surface scanned by the laser while it is in a scanning mode during which the laser is modulated by the image information. The intensity control device according to the present invention stores a first representation of a present light intensity of the laser during its non-scanning mode. It further stores a second representations of a user selected image density for a hard copy produced by the printer. The first and second representations are combined for forming a control voltage during a non-scanning mode of the laser. Finally, a current is produced that is supplied to the laser in response to the control voltage such that the intensity of light produced by the laser is dependent on both the first and second representations.