摘要:
In a synchronous semiconductor memory device of the present invention, a main word driver and a sub decode driver have a function to take in a row decode signal in response to activation of a bank and to maintain the state of the row decode signal. Accordingly, of the circuits associated with row selection, a row pre-decoder, a row decoder and a row system control circuit can operate under a hierarchical power supply structure.
摘要:
Provided is a power supply-to-power supply capacitance cell including a first capacitor connected between a sub power supply line and a sub ground line, a second capacitor connected between a main power supply line and the sub ground line, and a third capacitor connected between the sub power supply line and a main ground line. Thus, a voltage drop of the sub power supply line can be reduced in current consumption of an internal circuit, so that an operation of the internal circuit is stabilized and the operating speed thereof is improved.
摘要:
An internal power supply potential generation circuit includes an overcharge prevention circuit connected to an internal power supply node. The overcharge prevention circuit includes a circuit outputting a signal to be determined that is determined by an internal power supply potential, a differential amplification circuit amplifying a difference in potential between the signal to be determined and a reference potential for output to a node as a signal indicating that current should be drawn, and a current draw circuit drawing current from the internal power supply node in response to the signal indicating that current should be drawn. Thus the semiconductor integrated circuit device of interest can provide a steady internal power supply potential.
摘要:
First and second memory banks are provided with M memory blocks each having first and second memory regions, M representing an even number of no less than two, and (M+1) sense amplifier bands arranged on opposite sides of each memory block, and have first and second select lines arranged therefor to select the first and second memory regions, respectively, the first select line being connected to an odd-numbered sense amplifier band of the first memory bank and an even-numbered sense amplifier band of the second memory bank, the second select line being connected to an even-numbered sense amplifier band of the first memory bank and an odd-numbered sense amplifier band of the second memory bank.
摘要:
A first power supply voltage is supplied to a power supply node of a sense amplifier. A bit line driver outputs a column select signal composed of a second power supply voltage to the gate terminals of N channel MOS transistors of a GIO line gate circuit. When input/output data is [1], a third power supply voltage lower than the first power supply voltage is supplied onto a global data line. In this case, with a threshold voltage of N channel MOS transistors used, a relation is established: second power supply voltage≦third power supply voltage+threshold voltage. As a result, a leakage current can be reduced in a semiconductor memory device driven by plural power supply voltages with respective different voltage levels.
摘要:
The antifuse is brought into an electrically conducted state by setting the voltage Vpgm to a high voltage after activating the signal SA and setting the node N1 once to an L-level. By inversion of the latch, the voltage of the node N1 will be the power source voltage Vcc to bring the transistor into a non-conducted state, whereby the electric current flowing through the antifuse is cut off. A semiconductor device can be provided which includes an antifuse program circuit capable of cutting the electric current off after blowing, so as to prevent decrease in the blowing voltage.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss′, and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss′.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss', and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss'.
摘要:
Drains of first and second transistors are connected to a low level line of an internal circuitry such as a sense amplifier related to determination of a potential in a memory cell. The first transistor has its gate diode-connected to a sense drive line and its source grounded. The second transistor receives at its gate an internally generated signal, and its source is grounded. In the standby state, the potential of the sense drive line is set higher than low level of said word lines by the threshold voltage Vthn of the first transistor and used as dummy GND potential Vss', and in the active state, the second transistor is rendered conductive so as to prevent floating of the sense drive line from the dummy GND potential Vss'.