摘要:
A power transmission mechanism for a front and rear-wheel drive vehicle in which the power of an electric motor is transmitted to rear wheels includes an output shaft adapted to rotate together with the electric motor, a middle shaft which is parallel with the output shaft, a drive shaft which is parallel with the output shaft and is adapted to rotate together with the rear wheels, a first pair of reduction gears for reducing the speed of rotation of the middle shaft relative to the output shaft, a second pair of reduction gears for reducing the speed of rotation of the drive shaft relative to the middle shaft and a rear differential disposed closer to an electric motor side than the second pair of reduction gears and coupled to the reduction gear and the drive shaft.
摘要:
There are provided a synchronizing system which synchronizes two relatively rotating rotary bodies with each other by frictional forces generated between friction discs, such that a larger torque can be transmitted between the rotary bodies as an input torque becomes larger, and a transmission torque control device for the synchronizing system. In order to transmit torque between an input shaft and a gear member, the synchronizing system which connects the input shaft and the gear member with each other while synchronizing them urges a blocking ring toward the gear member by using a synchronizing spring, when a sleeve is caused to slide toward the blocking ring by an actuator. This starts synchronization of the input shaft and the gear member via friction discs rotating together with the blocking ring and friction discs rotating together with the gear member, and brings the tooth ends of the splines of the sleeve and the tooth ends of the splines of the blocking ring into abutment with each other, whereby the input shaft and the gear member are mechanically connected to each other.
摘要:
There is provided a driving force control system for a front-and-rear wheel drive vehicle, which is capable maintaining an optimum slip condition of the drive wheels even on a low-friction road surface, ensuring a proper grip of rear wheels even on a low-friction road surface or a downhill slope, even when the driver operates the steering wheel while the vehicle is performing decelerating travel on such a road, and smoothly performing the assistance of an electric motor when the vehicle is accelerated without developing a torque step, thereby ensuring stable traveling and excellent acceleration and drivability. The front-and-rear wheel drive vehicle drives the front wheels by an engine, and rear wheels by an electric motor via an electromagnetic clutch. The target driving force for driving the vehicle is calculated based on at least a vehicle speed and an accelerator pedal opening. The present traveling condition of the vehicle is determined. The driving force for driving the vehicle is controlled based on the calculated target driving force in dependence on the determined traveling condition of the vehicle.
摘要:
A semiconductor device includes a semiconductor substrate, an element-isolating region formed in the semiconductor substrate, a real element region formed in the semiconductor substrate and outside the element-isolating region and having a metal silicide layer formed on the surface thereof, and a dummy element region formed in the semiconductor substrate and outside the element-isolating region and having a metal silicide layer formed on the surface thereof. The ratio of the sum of pattern areas of the real element region and dummy element region occupied in a 1 μm-square range of interest including the element region is 25% or more.
摘要:
A novel nonvolatile memory element, which can be manufactured by a simple and high yield process by using an organic material and has a high on/off ratio, and a method for manufacturing such nonvolatile memory element. A switching layer (14) made of an electrical insulating radical polymer is provided between an anode layer (12) and a cathode layer (16). Further, a hole injection transport layer (13) is provided between the switching layer (14) and the anode layer (12), and an electron injection transport layer (15), between the switching layer (14) and the cathode layer (16). An intermediate layer is provided between the switching layer and the adjacent layer. The radical polymer is preferably nitroxide radical polymer. The switching layer (14), the hole injection transport layer (13) and the electron injection transport layer (15) are formed by being stacked by a wet process.
摘要:
A CPP giant magnetoresistive head includes a lower shield layer; an upper shield layer; and a giant magnetoresistive element (GMR) between the lower shield layer and the upper shield layer. The GMR includes a nonmagnetic material layer; a pinned magnetic layer; and a free magnetic layer. The pinned layer and the free layer are laminated with the nonmagnetic layer provided therebetween. A current flows perpendicularly to a film plane of the GMR, the pinned magnetic layer extends in the height direction longer than in a track-width direction and includes a first portion in the GMR. The first portion is disposed above or below the nonmagnetic layer and the free layer. A second portion is behind the nonmagnetic layer and the free layer in the height direction. The first and second portions are in the same plane. The width of the pinned layer in the track-width direction in the first portion is greater than that in the second portion.
摘要:
A semiconductor device includes a semiconductor substrate, an element-isolating region formed in the semiconductor substrate, a real element region formed in the semiconductor substrate and outside the element-isolating region and having a metal silicide layer formed on the surface thereof, and a dummy element region formed in the semiconductor substrate and outside the element-isolating region and having a metal silicide layer formed on the surface thereof. The ratio of the sum of pattern areas of the real element region and dummy element region occupied in a 1 μm-square range of interest including the element region is 25% or more.
摘要:
A magnetoresistive-effect device includes a multilayer film, hard bias layers arranged on both sides of the multilayer film, and electrode layers respectively deposited on the hard bias layers. The electrode layers are formed, extending over the multilayer film. Under the influence of the hard bias layers arranged on both sides of the multilayer, the multilayer film, forming the magnetoresistive-effect device, has, on the end portions thereof, insensitive regions which exhibit no substantial magnetoresistive effect. The insensitive region merely increases a direct current resistance. By extending the electrode layers over the insensitive regions of the multilayer film, a sense current is effectively flown from the electrode layer into the multilayer film. With a junction area between the electrode layer and the multilayer film increased, the direct current resistance is reduced, while the reproduction characteristics of the device are thus improved.
摘要:
A magnetoresistive-effect device includes a multilayer film, hard bias layers arranged on both sides of the multilayer film, and electrode layers respectively deposited on the hard bias layers. The electrode layers are formed, extending over the multilayer film. Under the influence of the hard bias layers arranged on both sides of the multilayer, the multilayer film, forming the magnetoresistive-effect device, has, on the end portions thereof, insensitive regions which exhibit no substantial magnetoresistive effect. The insensitive region merely increases a direct current resistance. By extending the electrode layers over the insensitive regions of the multilayer film, a sense current is effectively flown from the electrode layer into the multilayer film. With a junction area between the electrode layer and the multilayer film increased, the direct current resistance is reduced, while the reproduction characteristics of the device are thus improved.
摘要:
The invention provides a spin valve thin film element in which output characteristics and the stability of reproduced waveforms are improved, asymmetry is decreased, and the occurrence of side reading is prevented. The spin valve thin film element includes a lamination having an antiferromagnetic layer, a first pinned magnetic layer, a nonmagnetic intermediate layer, a second pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer, and a backed layer composed of a nonmagnetic conductive material, which are laminated on a substrate. Hard bias layers are formed on both sides of the lamination, and orient the magnetization direction of the free magnetic layer in the direction crossing the magnetization direction of the second pinned magnetic layer. Electrode layers are formed on the hard bias layers to supply a sensing current J to the lamination. The electrode layers are formed to extend to the surface of the lamination toward the central portion from both sides of the lamination.