摘要:
A cover 1b of a battery pack case has an intake port and an exhaust port 31. With in the battery pack case, battery accommodation sections respectively accommodate battery modules and a junction box accommodation section. A supply flow path and an exhaust flow path are provided at ends of each of the battery accommodation section. A guide is provided between the cover and the battery modules accommodated in the battery accommodation portions. The guide and a lower surface of the cover define a distribution flow path. The air introduced from the intake port flows to the exhaust port through the distribution flow path, supply flow paths, clearances between battery cells, exhaust flow paths, and exhaust port. The battery cells are efficiently cooled.
摘要:
A cover 1b of a battery pack case has an intake port and an exhaust port 31. With in the battery pack case, battery accommodation sections respectively accommodate battery modules and a junction box accommodation section. A supply flow path and an exhaust flow path are provided at ends of each of the battery accommodation section. A guide is provided between the cover and the battery modules accommodated in the battery accommodation portions. The guide and a lower surface of the cover define a distribution flow path. The air introduced from the intake port flows to the exhaust port through the distribution flow path, supply flow paths, clearances between battery cells, exhaust flow paths, and exhaust port. The battery cells are efficiently cooled.
摘要:
Even if a junction box is laid out such that a region where a battery cell is disposed is divided, the battery cell is effectively cooled. A battery pack includes: a battery pack case (1) including a junction box accommodating portion (10) and a battery accommodating portions (7, 8a, 8b); and a plurality of batteries (2) accommodated in the battery accommodating portions (7, 8a, 8b) of the battery pack case (1). The junction box accommodating portion (10) is covered with shield members (21, 22, 23).
摘要:
Provided is a battery pack that can uniformly cool a plurality of electric cells, prevent a breakdown of the electric cells, and provide high performance of all electric cells. The battery pack includes a packaging case in which: each adjacent ones of a plurality of electric cells in the first direction define a ventilation space; first and second passages are defined that extend in the first direction and that are arranged to have the plurality of electric cells located between the first and second passages in a second direction intersecting the first direction, wherein gas supplied to the first passage flows through the ventilation spaces to the second passage; and a flow rate limitation device is provided that is arranged in an upstream area of the first passage and that limits a flow rate of the gas flowing through one of the plurality of ventilation spaces, which leads to the upstream area of the first passage, to a predetermined flow rate.
摘要:
Provided is a battery pack that can uniformly cool a plurality of electric cells, prevent a breakdown of the electric cells, and provide high performance of all electric cells. The battery pack includes a packaging case in which: each adjacent ones of a plurality of electric cells in the first direction define a ventilation space; first and second passages are defined that extend in the first direction and that are arranged to have the plurality of electric cells located between the first and second passages in a second direction intersecting the first direction, wherein gas supplied to the first passage flows through the ventilation spaces to the second passage; and a flow rate limitation device is provided that is arranged in an upstream area of the first passage and that limits a flow rate of the gas flowing through one of the plurality of ventilation spaces, which leads to the upstream area of the first passage, to a predetermined flow rate.
摘要:
A detection apparatus includes a transistor disposed on a substrate, a conversion element disposed above the transistor and connected to the transistor, a capacitor connected in parallel with conversion element to the transistor, the capacitor including, between the substrate and the conversion element, an ohmic contact part connected to the conversion element, a semiconductor part connected to the ohmic contact part, and an electrically conductive part disposed at a location opposite to the semiconductor part and the ohmic contact part via an insulating layer, and a potential supplying unit configured to selectively supply a first electric potential to the electrically conductive part to accumulate charge carriers in the semiconductor part and a second electric potential to the electrically conductive part to deplete the semiconductor part. The detection apparatus configured in the above-described manner is capable of controlling pixel capacitance thereby achieving a high signal-to-noise ratio.
摘要:
In an image pickup apparatus including a plurality of pixels arranged a matrix of rows and columns, a correction unit performs a correction process based on an electric signal output via a first switch element of a particular pixel and a correction electric signal output via a second switch element of the particular pixel. A correction image signal based on the correction electric signal output via the second switch element is acquired in a period that partially overlaps in time a period in which an image signal based on the electric signal output via the first switch element is acquired. When the electric signal associated with the image signal is output for the particular pixel, the second switch element of the particular pixel is controlled to be in an on-state over a period during which the first switch element of the particular pixel is in an off-state.
摘要:
In a method of manufacturing a detection device including pixels on a substrate, each pixel including a switch element and a conversion element including an impurity semiconductor layer on an electrode, which is disposed above the switch element and isolated per pixel, the switch element and the electrode being connected in a contact hole formed in a protection layer and an interlayer insulating layer, which are disposed between the switch elements and the electrodes, the method includes forming insulating members over the interlayer insulating layer between the electrodes in contact with the interlayer insulating layer, forming an impurity semiconductor film covering the insulating members and the electrodes, and forming a coating layer covering an area of the protection layer where an orthographically-projected image of a portion of the electrode is positioned, the portion including a level difference within the contact hole.
摘要:
In a method of manufacturing a detection device including a plurality of pixels arrayed on a substrate, the pixels each including a switch element and a conversion element including an impurity semiconductor layer disposed on an electrode, which is disposed above the switch element, which is isolated per pixel, and which is made of a transparent conductive oxide joined to the switch element, and further including an interlayer insulating layer, which is made of an organic material, which is disposed between the switch elements and the electrodes, and which covers the switch elements, the method includes insulating members each made of an inorganic material and disposed to cover the interlayer insulating layer between adjacent two of the electrodes in contact with the interlayer insulating layer, and forming an impurity semiconductor film covering the insulating members and the electrodes and becoming the impurity semiconductor layer.
摘要:
A radiation detection apparatus includes a scintillator configured to convert incident radiation into visible light, a photoelectric conversion unit and an electrically conductive member. The photoelectric conversion unit includes a two-dimensional array of pixels arranged on a substrate. Each pixel is configured to convert the visible light into an electric signal. The electrically conductive member is supplied with a fixed potential. The electrically conductive member, the substrate, the photoelectric conversion unit, and the scintillator are disposed in this order from the radiation-incident side of the radiation detection apparatus to the opposite side.