摘要:
In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
摘要:
The present invention is contemplated for providing a diamond semiconductor device where an impurity-doped diamond semiconductor is buried in a selected area, and a method of manufacturing the same.That is, a diamond semiconductor device having an impurity-doped diamond area selectively buried in a recessed portion formed in a diamond substrate; and a method of manufacturing a diamond semiconductor device, including the steps of selectively forming an recessed portion on the {100}-facet diamond semiconductor substrate, wherein the bottom face of the recessed portion is surrounded by the {100} facet and the side face of the recessed portion is surrounded by the {110} facet, and forming an impurity-doped diamond area by epitaxially growing diamond in the direction while doping with impurities and burying the recessed portion.
摘要:
In this junction element 1, when a forward voltage is applied, a depletion layer is formed in a semiconductor layer 2, prohibiting electrons present in an electrode layer 4 to move into the semiconductor layer 2. For this reason, a majority of holes in a semiconductor layer 3 do not disappear by recombination with conduction electrons in the semiconductor layer 2, but reach the electrode layer 4 while diffusing into the semiconductor layer 2. Accordingly, the junction element 1 can serve as a good conductor for holes, while avoiding the influence of a resistance value, and allows a current to flow therethrough at a level equal to or more than that achieved by a semiconductor element formed of a Si or SiC semiconductor. The present invention is applicable to any semiconductor material in which at least one of a donor level and an acceptor level is located at a sufficiently deep position beyond a thermal excitation energy at an operating temperature, such as diamond, zinc oxide (ZnO), aluminum nitride (AlN), or boron nitride (BN). The present invention is also applicable to even a material having a shallow impurity level at room temperature, such as silicon (Si), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), or germanium (Ge), as long as operation is performed at such a low temperature that the thermal excitation energy can be sufficiently small.
摘要:
The present invention is contemplated for providing a diamond semiconductor device where an impurity-doped diamond semiconductor is buried in a selected area, and a method of manufacturing the same. That is, a diamond semiconductor device having an impurity-doped diamond area selectively buried in a recessed portion formed in a diamond substrate; and a method of manufacturing a diamond semiconductor device, including the steps of selectively forming an recessed portion on the {100}-facet diamond semiconductor substrate, wherein the bottom face of the recessed portion is surrounded by the {100} facet and the side face of the recessed portion is surrounded by the {110} facet, and forming an impurity-doped diamond area by epitaxially growing diamond in the direction while doping with impurities and burying the recessed portion.
摘要:
Provided is a light emitting device formed of an indirect transition semiconductor configured from a semiconductor material having high exciton binding energy, wherein an active layer of the indirect transition semiconductor or an active region by a pn junction is formed, the light emitting device has an electrode for injecting current into the active layer or the active region, and the internal quantum efficiency is 10% or more.
摘要:
Provided is a light emitting device formed of an indirect transition semiconductor configured from a semiconductor material having high exciton binding energy, wherein an active layer of the indirect transition semiconductor or an active region by a pn junction is formed, the light emitting device has an electrode for injecting current into the active layer or the active region, and the internal quantum efficiency is 10% or more.
摘要:
A diamond pn junction diode includes a p-type diamond thin-film layer formed on a substrate and an n-type diamond thin-film layer formed by forming a high-quality undoped diamond thin-film layer on the p-type diamond thin-film layer and ion-implanting an impurity into the high-quality undoped diamond thin-film layer, or alternatively includes an n-type diamond thin-film layer formed on a substrate and a p-type diamond thin-film layer formed by forming a high-quality undoped diamond thin-film layer on the n-type diamond thin-film layer and ion-implanting an impurity into the high-quality undoped diamond thin-film layer. A method of fabricating a diamond pn junction diode includes the steps of forming a p-type diamond thin-film layer on a substrate, forming a high-quality undoped diamond thin-film layer on the p-type diamond thin-film layer, and making the high-quality undoped diamond thin-film layer an n-type diamond thin-film layer by ion implantation of an impurity, or alternatively includes the steps of forming an n-type diamond thin-film layer on a substrate, forming a high-quality undoped diamond thin-film layer on the n-type diamond thin-film layer, and making the high-quality undoped diamond thin-film layer a p-type diamond thin-film layer by ion implantation of an impurity.
摘要:
A diamond semiconductor includes a high-quality thin diamond film layer with few crystal defects and few impurities, implanted with ions of dopant elements and controllable in conductivity determined by a kind and a concentration of the dopant elements. The diamond semiconductor is fabricated by a method including the step of implanting ions of dopant elements into a high-quality thin diamond film layer with few crystal defects and few impurities under conditions that can attain given distribution of concentrations of the dopant elements and with the high-quality thin diamond film layer kept to a temperature in accordance with the conditions so as not to be graphitized, to thereby enable the diamond semiconductor to have conductivity determined by a kind and a concentration of the dopant elements.
摘要:
The present invention provides a fixing device and a digital photocopier which can shorten the time from an instruction of starting image formation to end of fixing. The fixing device is provided in a cylinder made of metal and having a small thickness, and includes a magnetic excitation coil. When the power source is turned on, all the electric power defined by subtracting an electric power amount consumed by components other than the fixing device is supplied to the magnetic excitation coil to perform heating. As the structural components of the photocopier and auxiliary devices added to the photocopier operate, the electric power defined by subtracting, from the maximum input electric power, the electric power consumed by the structural components of the photocopier and the auxiliary devices is supplied to perform heating. In this manner, the heat roller of the fixing device is heated, in a short time, to a temperature which enables fixing, so that the time required for first copying can be shortened.
摘要:
An electrophotographic fixing device allowing a flow of an AC current through an electromagnetic induction coil arranged close to a heating roller having a metal layer formed of a conductor and allowing the heat generation of the heating roller to heat a to-be-fixed member, in which the fixing device comprises a circuit board for outputting the AC current from an output terminal and passing the current through the electromagnetic induction coil, a conductive plate metal having one end side fixed by a fastening screw to the output terminal of the circuit board, a male-side connection terminal provided on the other end of the plate metal, and a female-side connection terminal provided at an end of a leader line of the electromagnetic induction coil and detachably connected to a male-side connection terminal.