摘要:
A semiconductor device has a multilevel interconnection structure that includes an insulating interlayer formed on a lower wiring layer, a semiconductor substrate, and at least one via hole. The via plug partially fills the via hole, and the upper surface of the via plug may have a convex shape or a surface of the lower wiring layer at a bottom of the via hole may have a concave shape. Where two via holes are present, one via plug substantially fills the shallowest via hole, and partially fills the deepest via hole. The upper wiring layer may be formed over the via plug to fill a remaining portion of the via hole not filled by the via plug.
摘要:
A semiconductor device has a multilayered structure that includes an insulating interlayer formed on a lower wiring layer, a semiconductor substrate, and a via hole. The semiconductor device is manufactured by a method that includes plasma etching at least one surface of the insulating interlayer the in an atmosphere having as a major component either a carbonless, chlorine-based gas or a carbonless, chlorine-based gas and an inactive gas in order to remove contaminates that would otherwise promote reactivity with aluminum CVD on the surface of the insulating interlayer.
摘要:
A multilevel interconnect structure for use in a semiconductor device includes a lower metal wiring having an aluminum or aluminum alloy film and a high melting point metal or high melting point metal alloy film. An interlayer insulating film is deposited on the lower metal wiring and a via hole is formed in the interlayer insulating film. A plug made of aluminum or aluminum alloy is formed in the via hole. An upper metal wiring has an aluminum or aluminum alloy film and a high melting point metal or high melting point metal alloy film. The plug directly contacts the aluminum or aluminum alloy film of at least one of the lower and upper metal wirings to decrease the via resistance without reducing the electromigration reliability.
摘要:
A method of forming a via structure having good characteristics in a semiconductor device having a multilayered wiring structure includes forming a thin film including a high melting point metal or a high melting point metal compound on at least the side wall of a via hole before a via plug including Al or an Al alloy is formed.
摘要:
A semiconductor device with a contact structure includes a silicon substrate, a diffusion region formed in a surface of the silicon substrate, a silicide film of high melting point metal deposited on the diffusion region, an insulating film formed on the silicon substrate, a contact hole formed in the insulating film such that the silicide film is exposed at a bottom of the contact hole, an anti-diffusion film formed on the exposed surface of the silicide film at the bottom of the contact film, a plug formed in the contact hole by a selective Al CVD, and a metal wiring formed on the insulating film such that the metal wiring is electrically connected to the diffusion region by means of the plug, anti-diffusion film and silicide film. The anti-diffusion film may be formed by nitriding the surface of the silicide film.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connection holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connecting holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connection holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
In a multilevel interconnect structure for use in a semiconductor device including a lower metal wiring having an aluminum or aluminum alloy film and a high melting point metal or high melting metal alloy film, an interlayer insulating film deposited on the lower metal wiring, a via hole formed in the interlayer insulating film, a plug made of aluminum or aluminum alloy and formed in the via hole, and an upper metal wiring having an aluminum or aluminum alloy film and a high melting point metal or high melting point metal alloy film, said plug is directly contacted with the aluminum or aluminum alloy film of at least one of the lower and upper metal wirings to decrease the via resistance without reducing the electromigration reliability. The plug is formed such that its top portion protrudes from the interlayer insulating film, the high melting point metal or high melting point metal alloy film of the upper metal wiring is formed, and then the top portion of the plug is removed together with a part of the high melting point metal or high melting point metal alloy film by a chemical mechanical polishing to expose an upper end of the plug. Then, the aluminum or aluminum alloy film of the upper metal wiring is formed to be brought into direct contact with the plug.
摘要:
An insulating layer is provided on a semiconductor substrate, a contact hole is formed in the insulating layer, and an underlying metal film is provided on a whole surface of the substrate including inner walls of the contact hole. A surface condition of the underlying metal film is adjusted by a hydrogen plasma treatment. By the hydrogen plasma treatment, a surface of the underlying metal film is hydrogenated and is sputter-etched, so that a disordered film and contaminants adsorbed on the surface of the underlying metal film are removed. Next, aluminum is deposited on the underlying metal film by a chemical vapor deposition process using an organic aluminum compound such as DMAH. The contact hole can be effectively filled with aluminum.