摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connection holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connecting holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connection holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A semiconductor device has a multilevel interconnection structure that includes an insulating interlayer formed on a lower wiring layer, a semiconductor substrate, and at least one via hole. The via plug partially fills the via hole, and the upper surface of the via plug may have a convex shape or a surface of the lower wiring layer at a bottom of the via hole may have a concave shape. Where two via holes are present, one via plug substantially fills the shallowest via hole, and partially fills the deepest via hole. The upper wiring layer may be formed over the via plug to fill a remaining portion of the via hole not filled by the via plug.
摘要:
A semiconductor device has a multilayered structure that includes an insulating interlayer formed on a lower wiring layer, a semiconductor substrate, and a via hole. The semiconductor device is manufactured by a method that includes plasma etching at least one surface of the insulating interlayer the in an atmosphere having as a major component either a carbonless, chlorine-based gas or a carbonless, chlorine-based gas and an inactive gas in order to remove contaminates that would otherwise promote reactivity with aluminum CVD on the surface of the insulating interlayer.
摘要:
An insulating layer is provided on a semiconductor substrate, a contact hole is formed in the insulating layer, and an underlying metal film is provided on a whole surface of the substrate including inner walls of the contact hole. A surface condition of the underlying metal film is adjusted by a hydrogen plasma treatment. By the hydrogen plasma treatment, a surface of the underlying metal film is hydrogenated and is sputter-etched, so that a disordered film and contaminants adsorbed on the surface of the underlying metal film are removed. Next, aluminum is deposited on the underlying metal film by a chemical vapor deposition process using an organic aluminum compound such as DMAH. The contact hole can be effectively filled with aluminum.
摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.
摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.
摘要:
A film is formed so that the atomic numbers ratio of Sr to Ti, i.e., Sr/Ti, in the film is not less than 1.2 and not more than 3. The film is then annealed in an atmosphere containing not less than 0.001% and not more than 80% of O2 at 500° C. or above. An SrO film forming step or a TiO film forming step are repeated a plurality of times so that a sequence, in which a plurality of SrO film forming steps or/and a plurality of TiO film forming steps are performed continuously, is included. When Sr is oxidized after the adsorption of Sr, O3 and H2O are used as an oxidizing agent.
摘要:
Provided is a heat treatment apparatus which, when simultaneously heating substrates placed on susceptors, is capable of controlling the uniformity of temperature within each substrate. The heat treatment apparatus includes: a reaction tube which performs predetermined treatment to wafers; a plurality of susceptors each of which has a mounting surface for mounting the wafer and is made of a conductive material; a rotatable quartz boat wherein the susceptors spaced apart in a direction perpendicular to the mounting surfaces are arranged and supported in the reaction tube; a magnetic field generating unit which is arranged on a sidewall of the processing chamber and includes a pair of electromagnets which generate an AC magnetic field in a direction parallel to the mounting surfaces of the susceptors and inductively heat the susceptors; and a control unit which controls the AC magnetic field generated by the magnetic field generating unit.