摘要:
The present invention is a method for manufacturing a solar cell by forming a p-n junction in a semiconductor substrate having a first conductivity type, wherein, at least: a first coating material containing a dopant and an agent for preventing a dopant from scattering, and a second coating material containing a dopant, are coated on the semiconductor substrate having the first conductivity type so that the second coating material may be brought into contact with at least the first coating material; and, a first diffusion layer formed by coating the first coating material, and a second diffusion layer formed by coating the second coating material the second diffusion layer having a conductivity is lower than that of the first diffusion layer are simultaneously formed by a diffusion heat treatment; a solar cell manufactured by the method; and a method for manufacturing a semiconductor device. It is therefore possible to provide the method for manufacturing the solar cell, which can manufacture the solar cell whose photoelectric conversion efficiency is improved at low cost and with a simple and easy method by suppressing surface recombination in a portion other than an electrode of a light-receiving surface and recombination within an emitter while obtaining ohmic contact; the solar cell manufactured by the method; and the method for manufacturing the semiconductor device.
摘要:
The present invention is directed to a semiconductor substrate having an electrode formed thereon, the electrode including at least silver and glass frit, the electrode including: a multi-layered structure constituted of a first electrode layer joined directly to the semiconductor substrate, and an upper electrode layer formed of at least one layer and disposed on the first electrode layer; wherein the upper electrode layer is formed by firing a conductive paste having a total silver content of 75 wt % or more and 95 wt % or less, the content of silver particles having an average particle diameter of 4 μm or greater and 8 μm or smaller with respect to the total silver content in the upper electrode layer being higher than that in the first electrode layer. As a consequence, it is possible to form the electrode, which has the high aspect ratio and hardly suffers an inconvenience such as a break, on the semiconductor substrate by a simple method.
摘要:
The present invention is directed to a semiconductor substrate having an electrode formed thereon, the electrode including at least silver and glass frit, the electrode including: a multi-layered structure constituted of a first electrode layer joined directly to the semiconductor substrate, and an upper electrode layer formed of at least one layer and disposed on the first electrode layer; wherein the upper electrode layer is formed by firing a conductive paste having a total silver content of 75 wt % or more and 95 wt % or less, the content of silver particles having an average particle diameter of 4 μm or greater and 8 μm or smaller with respect to the total silver content in the upper electrode layer being higher than that in the first electrode layer. As a consequence, it is possible to form the electrode, which has the high aspect ratio and hardly suffers an inconvenience such as a break, on the semiconductor substrate by a simple method.
摘要:
A semiconductor substrate having an electrode formed thereon, the electrode including at least silver and glass frit, the electrode including: a multi-layered structure with a first electrode layer joined directly to the semiconductor substrate, and an upper electrode layer formed of at least one layer and disposed on the first electrode layer. The upper electrode layer is formed by firing a conductive paste having a total silver content of 75 wt % or more and 95 wt % or less, the content of silver particles having an average particle diameter of 4 μm or greater and 8 μm or smaller with respect to the total silver content in the upper electrode layer being higher than that in the first electrode layer.
摘要:
The present invention is directed to a semiconductor substrate having at least an electrode formed thereon, in which the electrode has a multilayer structure including two or more layers, of the multilayer structure, at least a first electrode layer directly bonded to the semiconductor substrate contains at least silver and a glass frit, and contains, as an additive, at least one of oxides of Ti, Bi, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Si, Al, Ge, Sn, Pb, and Zn, and, of an electrode layer formed on the first electrode layer, at least an uppermost electrode layer to be bonded to a wire contains at least silver and a glass frit and does not contain the additive. This makes it possible to form, on a semiconductor substrate, an electrode adhered to the semiconductor substrate with sufficient adhesive strength and adhered to a wire via solder with sufficient adhesive strength by lowering both contact resistance and interconnect resistance.
摘要:
The present invention is directed to a semiconductor substrate having at least an electrode formed thereon, in which the electrode has a multilayer structure including two or more layers, of the multilayer structure, at least a first electrode layer directly bonded to the semiconductor substrate contains at least silver and a glass frit, and contains, as an additive, at least one of oxides of Ti, Bi, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Si, Al, Ge, Sn, Pb, and Zn, and, of an electrode layer formed on the first electrode layer, at least an uppermost electrode layer to be bonded to a wire contains at least silver and a glass frit and does not contain the additive. This makes it possible to form, on a semiconductor substrate, an electrode adhered to the semiconductor substrate with sufficient adhesive strength and adhered to a wire via solder with sufficient adhesive strength by lowering both contact resistance and interconnect resistance.
摘要:
A method of fabricating a solar cell forms a large number of grooves on a first main surface of a p-type silicon single crystal substrate sliced out from a silicon single crystal ingot as described below. First an edge portion of a groove-carving blade is projected out from a flat substrate feeding surface of a working table by a predetermined height. The p-type silicon single crystal substrate is moved along the substrate feeding surface towards the rotating groove-carving blade while keeping a close contact of the first main surface thereof with the substrate feeding surface. Electrodes are then formed on the inner side face of thus-carved grooves only on one side in the width-wise direction thereof.
摘要:
A method of fabricating a solar cell forms a large number of grooves on a first main surface of a p-type silicon single crystal substrate sliced out from a silicon single crystal ingot as described below. First an edge portion of a groove-carving blade is projected out from a flat substrate feeding surface of a working table by a predetermined height. The p-type silicon single crystal substrate is moved along the substrate feeding surface towards the rotating groove-carving blade while keeping a close contact of the first main surface thereof with the substrate feeding surface. Electrodes are then formed on the inner side face of thus-carved grooves only on one side in the width-wise direction thereof.
摘要:
An OECO solar cell using a semiconductor single crystal substrate having a plurality of grooves, wherein a minimum groove depth h of each groove always satisfies the relation of h≧W1tan θ where θ represents an angle between a line connecting the lower end, along the thickness-wise direction of the semiconductor single crystal substrate, of an electrode formed in the groove and the upper end of the inner side face of the same groove having no electrode formed thereon, and a reference line normal to the thickness-wise direction, and W1 represents a distance between both opening edges of the groove; wherein the semiconductor single crystal substrate has thickness decreasing from a first side of a first main surface to a second side opposed to the first side; and wherein the plurality of grooves have a depth distribution of being deepest at a thickest position of the substrate, and a gradually becoming shallower towards a thinnest position of the substrate.
摘要翻译:使用具有多个凹槽的半导体单晶基板的OECO太阳能电池,其中每个凹槽的最小凹槽深度h总是满足h> = W 1tanθ的关系,其中θ表示 连接沿着半导体单晶基板的厚度方向的下端,形成在槽中的电极和形成在其上的没有电极的同一槽的内侧面的上端的线,以及参考线 垂直于厚度方向,W 1 1表示槽的两个开口边缘之间的距离; 其中所述半导体单晶衬底具有从第一主表面的第一侧到与所述第一侧相对的第二侧的厚度; 并且其中所述多个凹槽具有在所述基底的最厚位置处最深的深度分布,并且朝向所述基底的最薄位置逐渐变浅。
摘要:
A solar cell module 60 has a plurality of solar cells 14 having a plurality of parallel grooves 8 on the individual light-receiving surfaces thereof, each of the grooves having an electrode 5 for extracting output on the inner side face (electrode-forming inner side face) on one side in the width-wise direction thereof; and a support 10, 50 for supporting the solar cells 14 in an integrated manner so as to direct the light-receiving surfaces upward. The annual power output can be increased by adjusting the direction of arrangement of the electrode-forming inner side faces of the grooves 8 while taking the angle of inclination β of the light-receiving surface of the individual as-installed solar cells 14 relative to the horizontal plane and the latitude δ of the installation site of the solar cell module into consideration.