摘要:
An inner surface of a cell 12 of a honeycomb carrier 11 except a downstream end of the inner surface in the exhaust direction is coated with a HC (hydrocarbon) adsorption material 13. The inner surface of the cell 12 coated with the HC adsorption material 13 is coated with a three way catalytic converter layer 14. A portion X located upstream side of the exhaust flow and having the three way catalytic converter layer 14 on the HC adsorption material 13, and a three way catalytic converter layer portion Y located downstream side of the exhaust flow are formed on an inner surface of the cell 12 of the honeycomb carrier 11. With this feature, the HC repeats elimination, re-adsorption, elimination, re-adsorption, . . . from the portion of the HC adsorption catalyst 10 upstream of the exhaust flow, finally reaches the downstream end of the portion X including the three way catalytic converter layer 14 on the HC adsorption material 13. Since the downstream end of this portion X is provided with the three way catalytic converter layer portion Y, the HC is converted by the three way catalytic converter layer 14 of this portion Y.
摘要:
Exhaust gas due to combustion is discharged into the atmosphere through a combined catalytic-hydrocarbon adsorbent 20. The combined catalytic-hydrocarbon adsorbent consists of a hydrocarbon adsorbent layer 20A and a three-way catalytic layer 20B. The hydrocarbon adsorbent layer 20A adsorbs hydrocarbons at a lower temperature, and desorbs hydrocarbons at a higher temperature. The three-way catalytic layer 20B purifies hydrocarbons desorbed from the hydrocarbon adsorbent layer 20A. To reduce the amount of hydrocarbons discharged to atmosphere, when the running condition of the engine is in the idling region, the ignition timing is retarded. This retarding of the ignition timing is limited to the time period after the hydrocarbon adsorbent layer 20A begins desorbing hydrocarbons until three-way catalytic layer 20B activates. With this design, the temperature of the combined catalyst-hydrocarbon adsorbent rises rapidly and the amount of hydrocarbon emission is controlled to be minimum.
摘要:
An exhaust gas passageway of an internal combustion engine is basically provided with a main exhaust passageway, a bypass exhaust passageway, a bypass catalytic converter provided in the bypass exhaust passageway, a bypass control valve, an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor. The bypass exhaust passageway bypasses a portion of the main exhaust passageway between an upstream junction and a downstream junction. The bypass control valve opens or closes a portion of the main exhaust passageway. The upstream air-fuel ratio sensor is disposed upstream of the bypass catalytic converter to sense air-fuel ratio of an exhaust gas flowing into the bypass catalytic converter. The downstream air-fuel ratio sensor is disposed downstream of the bypass catalytic converter to sense air-fuel ratio of the exhaust gas flowing out of the bypass catalytic converter.
摘要:
An exhaust system of the internal combustion engine comprises upstream main paths for cylinders that are attached to a side of a cylinder head and extend towards a side of the engine, and are connected to the respective cylinders; a downstream main path in which the upstream main paths join so as to become one flow path; a main catalytic converter provided on the downstream main path; bypasses that are split from the upstream main paths or the downstream main path; a bypass catalytic converter that is provided on the bypass; and flow path switching valves that open and close the upstream main paths so that exhaust discharged from the cylinders flows into the bypass. The bypass catalytic converter is provided below the upstream main paths.
摘要:
An exhaust system of an internal combustion engine having at least one cylinder comprises a main exhaust passage connected to the cylinder; a main catalytic converter disposed in the main exhaust passage; a bypass exhaust passage that diverges from the main exhaust passage, the bypass exhaust passage having a gas flow resistance larger than that of the main exhaust passage and having a downstream end connected to the main exhaust passage at a position upstream of the main catalytic converter; an auxiliary catalytic converter disposed in the bypass exhaust passage; and a gas flow switching device that is capable of forcing exhaust gas from the cylinder of the engine to flow toward the bypass exhaust passage when assuming a given operation position.
摘要:
An internal combustion engine includes a main catalyst disposed in a main passage and a bypass catalyst disposed in a bypass passage bypassing the main passage on an upstream side of the main catalyst. The bypass passage has a smaller transverse cross-sectional area than the main passage. The internal combustion engine further includes a passage open/close unit, a residual gas amount changing unit, and a controller. The passage open/close unit is disposed in a portion of the main passage bypassed by the bypass passage to switch between an open state and a closed state. The residual gas amount changing unit is configured to change an amount of residual gas inside a combustion chamber. The controller is configured to control the residual gas amount changing unit when a passage opening condition for switching the passage open/close unit from the closed state to the open state is satisfied.
摘要:
The Rh content by percentage in an HC absorbent catalytic converter provided in an exhaust pipe is greater than the Rh content by percentage in an upstream three-way catalyst. In this way, even when HC which has been temporarily absorbed is emitted in an atmosphere and the exhaust gas becomes rich, the HC absorbent catalytic converter displays improved oxidization and removal of HC due to the high content by percentage of Rh which has a high HC conversion ratio in rich atmospheres. There is no necessity to control the air-fuel ratio to a strongly lean ratio and so HC removal can be improved while maintaining suppression of NOx emissions.
摘要:
An air intake structure is provided with an air intake control valve disposed in the air intake passage. The air intake control valve has a valve element pivotally mounted at one end adjacent to a passage wall of the air intake passage. The air intake control valve is configured to control a gas flow based on the rotational position of the valve element. At least one horizontal partitioning plate extends along the flow direction of an intake air. The horizontal partitioning plate can be stationary or moveable with the valve element. Optionally, the valve element has a swirl-producing notch and a vertical partitioning plate extends substantially perpendicular to the horizontal partitioning plate from a position corresponding to a vertical side edge of the swirl-producing notch when the air intake control valve is fully closed. The vertical partitioning plate can be stationary or moveable with the valve element.
摘要:
In an exhaust manifold of a four-cylinder engine four cylinders of which line up in order of cylinder #1, cylinder #2, cylinder #3 and cylinder #4, temperature rise performance of a manifold catalyst improves by shortening a total length of the exhaust manifold while preventing exhaust gas interference between the cylinders. Therefore, an exhaust manifold branch of cylinder #1 and an exhaust manifold branch of cylinder #4 in outward sides of the engine that are not fired in succession are made convergent with its convergence angle θ1 being equal to or below 20 degrees to form a first convergent exhaust manifold branch and an exhaust manifold branch of cylinder #2 and an exhaust manifold branch of cylinder #3 between the cylinder #1 and cylinder #4 that are not fired in succession are made convergent at a minimum distance having a laterally projected shape to form a second convergent exhaust manifold branch. The first and the second convergent exhaust manifold branches are thereafter convergent at a convergence angle θ3 from 0 degrees to 20 degrees.
摘要:
A catalyst (9) is disposed in an exhaust passage (8) of an internal combustion engine (1) for trapping nitrogen oxides in the exhaust from a fuel mixture of a lean air-fuel ratio and reducing trapped nitrogen oxides in the exhaust from a fuel mixture of an air-fuel ratio other than the lean air-fuel ratio. The catalyst (9) also traps sulfur oxides in the exhaust when the catalyst temperature is less than a predetermined temperature, and discharges the trapped sulfur oxides when the catalyst temperature rises above the predetermined temperature. A microprocessor (10) calculates for example the sulfur oxide stored amount of the catalyst (9) based on engine running conditions, and determines that sulfur oxide discharge condition is satisfied when the sulfur oxide stored amount exceeds a predetermined amount. When the discharge condition is satisfied, the microprocessor (10) controls the fuel injection amount and fuel injection timing of the fuel injector (6) so as to generate a stratified air-fuel mixture in the combustion chamber (3). The stratified air-fuel mixture comprises a first layer surrounding the spark plug (7) and a second layer situated outside the first layer. The first layer comprises an atomized air-fuel mixture of a rich air-fuel ratio within an ignitable range. The second layer is leaner than the first layer.