摘要:
There is provided a method of manufacturing a nitride semiconductor light emitting device. A method of manufacturing a nitride semiconductor light emitting device according to an aspect of the invention may include: nitriding a surface of an m-plane sapphire substrate; forming a high-temperature buffer layer on the m-plane sapphire substrate; depositing a semi-polar (11-22) plane nitride thin film on the high-temperature buffer layer; and forming a light emitting structure including a first nitride semiconductor layer, an active layer, and a second nitride semiconductor layer on the semi-polar (11-22) plane nitride thin film.
摘要:
There is provided a method of manufacturing a nitride semiconductor light emitting device. A method of manufacturing a nitride semiconductor light emitting device according to an aspect of the invention may include: nitriding a surface of an m-plane sapphire substrate; forming a high-temperature buffer layer on the m-plane sapphire substrate; depositing a semi-polar (11-22) plane nitride thin film on the high-temperature buffer layer; and forming a light emitting structure including a first nitride semiconductor layer, an active layer, and a second nitride semiconductor layer on the semi-polar (11-22) plane nitride thin film.
摘要:
There is provided a method of growing a nitride single crystal. A method of growing a nitride single crystal according to an aspect of the invention may include: growing a first nitride single crystal layer on a substrate; forming a dielectric pattern having an open area on the first nitride single crystal layer, the open area exposing a part of an upper surface of the first nitride single crystal layer; and growing a second nitride single crystal layer on the first nitride single crystal layer through the open area while the second nitride single crystal layer grows to be equal to or larger than a height of the dielectric pattern, wherein the height of the dielectric pattern is greater than a width of the open area so that dislocations in the second nitride single crystal layer move laterally, collide with side walls of the dielectric pattern, and are terminated.
摘要:
There is provided a method of growing a nitride single crystal. A method of growing a nitride single crystal according to an aspect of the invention may include: growing a first nitride single crystal layer on a substrate; forming a dielectric pattern having an open area on the first nitride single crystal layer, the open area exposing a part of an upper surface of the first nitride single crystal layer; and growing a second nitride single crystal layer on the first nitride single crystal layer through the open area while the second nitride single crystal layer grows to be equal to or larger than a height of the dielectric pattern, wherein the height of the dielectric pattern is greater than a width of the open area so that dislocations in the second nitride single crystal layer move laterally, collide with side walls of the dielectric pattern, and are terminated.
摘要:
A method of growing a semi-polar nitride single crystal thin film. The method includes forming a semi-polar nitride single crystal base layer on an m-plane hexagonal system single crystal substrate, forming a dielectric pattern layer on the semi-polar nitride single crystal base layer, and growing the semi-polar nitride single crystal thin film on the semi-polar nitride single crystal base layer having the dielectric pattern layer in a lateral direction. The growing of the semi-polar nitride single crystal thin film in a lateral direction includes primarily growing the semi-polar nitride single crystal thin film in the lateral direction such that part of a growth plane on the semi-polar nitride single crystal base layer has an a-plane, and secondarily growing the semi-polar nitride single crystal thin film in the lateral direction such that sidewalls of the primarily grown semi-polar nitride single crystal thin film are combined to have a (11 22) plane.
摘要:
A method of growing a semi-polar nitride single crystal thin film. The method includes forming a semi-polar nitride single crystal base layer on an m-plane hexagonal system single crystal substrate, forming a dielectric pattern layer on the semi-polar nitride single crystal base layer, and growing the semi-polar nitride single crystal thin film on the semi-polar nitride single crystal base layer having the dielectric pattern layer in a lateral direction. The growing of the semi-polar nitride single crystal thin film in a lateral direction includes primarily growing the semi-polar nitride single crystal thin film in the lateral direction such that part of a growth plane on the semi-polar nitride single crystal base layer has an a-plane, and secondarily growing the semi-polar nitride single crystal thin film in the lateral direction such that sidewalls of the primarily grown semi-polar nitride single crystal thin film are combined to have a (11 22) plane.
摘要:
Provided is a method of manufacturing a semiconductor laser diode. The method includes the steps of: preparing a GaN substrate having an a-plane or m-plane GaN layer formed thereon; forming a plurality of laser diode structures on the GaN layer; etching the GaN substrate such that a cutting reference line is formed in a groove shape along the crystal surface of the a-plane or m-plane, not a main plane; and cutting the GaN substrate along the cutting reference line so as to form a mirror surface of the semiconductor laser diode, the mirror surface coinciding with the crystal surface of the a-plane or m-plane, not the main plane.
摘要:
Provided is a method of manufacturing a semiconductor laser diode. The method includes the steps of: preparing a GaN substrate having an a-plane or m-plane GaN layer formed thereon; forming a plurality of laser diode structures on the GaN layer; etching the GaN substrate such that a cutting reference line is formed in a groove shape along the crystal surface of the a-plane or m-plane, not a main plane; and cutting the GaN substrate along the cutting reference line so as to form a mirror surface of the semiconductor laser diode, the mirror surface coinciding with the crystal surface of the a-plane or m-plane, not the main plane.
摘要:
A nitride semiconductor device includes n-type and p-type nitride semiconductor layers, an active layer, the active layer having a lamination of quantum barrier layers and quantum well layers, a thermal stress control layer disposed between the n-type nitride semiconductor layer and the active layer, and formed of a material having a smaller thermal expansion coefficient than the n-type and p-type nitride semiconductor layers, and a lattice stress control layer disposed between the thermal stress control layer and the active layer, and including a first layer and a second layer.
摘要:
Provided are a semiconductor light emitting device and a method for fabricating the same. The semiconductor light emitting device includes a light emitting structure and a pattern. The light emitting structure includes a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The pattern is formed on at least one light emitting surface among the surfaces of the light emitting structure. The pattern has a plurality of convex or concave parts that are similar in shape. The light emitting surface with the pattern formed thereon has a plurality of virtual reference regions that are equal in size and are arranged in a regular manner. The convex or concave part is disposed in the reference regions such that a part of the edge thereof is in contact with the outline of one of the plurality of virtual reference regions.