Abstract:
A light emitting diode (LED) lamp structure (100) of the present invention includes a housing body (102), a LED lamp module (500), and an electronic module (700, 700′). The housing body (102) includes a lamp base (200), a module base (400), a connecting ring (300) connecting the lamp base (200), and at least one clasping member (104) connecting the module base (400). The LED lamp module (500) connects the connecting ring (300) and is disposed on the lamp base (200). The electronic module (700, 700′) connects the clasping member (104) and is disposed on the module base (400). Thereby, assembling, disassembling and replacing can be achieved without any tools. Meanwhile, the entrance of moisture is also prevented, so that a life span of an electronic device is prolonged.
Abstract:
An electronic implement replacement structure includes a housing body (102) and an electronic module (300). The housing body (102) has a base (110) and a connecting ring (120) connected to the base (110). The connecting ring (120) includes press portions (124) and notches (122) spaced apart from one another and respectively disposed between each two adjacent press portion (124). A guiding groove (126) is formed on an outer surface of each of the press portions (124). The electronic module (300) is disposed on the base (110) and corresponding to the connecting ring (120). The electronic module (300) includes an electronic unit (310) and a rotatable ring (330) enclosing the electronic unit (310). An inner wall of the rotatable ring (330) has a sliding block (332) correspondingly and rotatably engaged with the guiding groove (126). Therefore, assembling and disassembling can be achieved without any tools.
Abstract:
An electronic device replacement structure (100) includes a housing body (102) and an electronic module (200, 200′). The housing body (102) includes a base (110) and at least one clasping member (120) connected with one side of the base (110). The base (110) is disposed inside the housing body (102), and a first plate (130) is protrudingly disposed on the base (110). The electronic module (200, 200′) is disposed on the base (110) and corresponding to the clasping member (120). The electronic module (200, 200′) includes a casing (210) and a fastening implement (300) connected to the casing (210). The fastening implement (300) has at least one elastic locking element (310) and a second plate (320). The elastic locking element (310) is engaged with the clasping member (120). The second plate (320) protrudes toward the first plate (130) and contacts against the first plate (130).
Abstract:
The present disclosure related to an effort-saving crank structure (1) of a bicycle (8), which includes: a crank mechanism (10) having a crank (11), a shaft end gear (12) and a treadle end gear (13) disposed on the crank (11); a transmission mechanism (20) disposed in the crank (11) and having a rotation shaft (21) and a first gear (22) and a second gear (23) connected to the rotation shaft (21), the first gear (22) and the shaft end gear (12) are engaged for transmission, and the second gear (23) and the treadle end gear (13) are engaged for transmission; a rotation arm unit (30) having a first rotation arm (31) and a second rotation arm (32), two ends of the second rotation arm (32) are respectively connected to the first rotation arm (31) and the treadle end gear (13).
Abstract:
A LED head sink module includes a LED module, which comprises a circuit substrate, a LED chip installed in the circuit substrate, a packing cup molded on the circuit substrate around the LED chip and a lens molded on the packing cup over the LED chip, a heat sink, which has a base and a flat mounting block located on the bottom side of the base for stopping against the circuit substrate of the LED module for absorbing waste heat, a bracket, which has a center opening that receives the circuit substrate of the LED module, first retaining members for fastening to a retaining portion at the periphery of the packing cup and second retaining members for fastening to the flat mounting block of the heat sink, and a water seal sandwiched between the LED module and the bracket to seal off outside moisture and dust.
Abstract:
A light-emitting unit adapter module includes a mounting base for mounting, a circuit board accommodated in the mounting base and having electrode pins connectable to an external power source, a light-emitting unit mountable in the mounting base, and a holding-down device fastenable to the mounting base to hold down the light-emitting unit, keeping the tubular electrodes of the light-emitting unit in positive contact with the electrode pins of the circuit board for power input and the heat sink of the light-emitting unit suspending outside the mounting base for quick dissipation of waste heat during operation of the light-emitting devices of the light-emitting unit.
Abstract:
An illumination device having an unidirectional heat-dissipating route, includes a heat sink and a LED light module. The heat sink includes a heat plate, a heat pipe and a heat-dissipating body. The heat pipe has a heat absorbing portion and a heat dissipating portion with a horizontal position different to that of the heat absorbing portion. The heat absorbing portion is connected to the heat plate, and a plurality of grooves is formed in the heat pipe to be communicated with the heat absorbing portion and the heat dissipating portion. The heat absorbing portion is lower than the heat dissipating portion. The heat-dissipating body is connected to the heat dissipating portion. The LED light module is connected to the heat plate. Thus the LEDs are protected and prevented from being destroyed by the heat, and the working life thereof is increased greatly.
Abstract:
A heat dissipating device includes thermal conductive pipes and a plurality of thermal fin modules. Each thermal fin module made by pressing and stacking is mounted on the thermal conductive pipes. A retainer is located between each two thermal fin modules to compress the thermal fin module, so that a distance between two fins of the thermal fin module is reduced. Finally, a fixing plate is set above the last thermal fin module on the thermal conductive pipes to fix the thermal fin modules securely engaged with the thermal conductive pipes. Therefore, the assembled heat dissipating module could not be loosed and deformed during delivery and the engaging contact between the fins and the thermal conductive pipes are enhanced, so to increase the heat dissipating effect of the heat dissipating module.
Abstract:
A method of fabricating a LED module by: bonding one or multiple LED chips and multiple conducting terminals to a circuit substrate, and then molding a packing cup on the circuit substrate over by over molding for enabling the LED chip(s) and the conducting terminals to be exposed to the outside of the packing cup, and then molding a lens on the packing cup and the LED chip(s) by over-molding. By means of directly molding the lens on the packing cup and the LED chip(s), no any gap is left in the lens, avoiding deflection, total reflection or light attenuation and enhancing luminous brightness and assuring uniform distribution of output light.
Abstract:
A light-emitting device pressure ring structure includes a mounting base for mounting, a circuit board accommodated in the mounting base and having electrode pins connectable to an external power source, a holder member insertable in the mounting base, a light-emitting unit fixedly mounted in the holder member with a bottom heat sink thereof suspending outside the holder member and tubular electrodes thereof connectable to the electrode pins of the circuit board for power input, and a pressure ring cap detachably threaded onto the mounting base to hold down the holder member and to keep the heat sink of the light-emitting unit outside the mounting base for quick dissipation of waste heat from the light-emitting devices of the light-emitting unit.