摘要:
A wet-etch composition may include: peracetic acid (PAA); and a fluorinated acid; a relative amount of the PAA in the composition being sufficient to ensure an etch rate of (P-doped-SiGe):(P-doped-Si) that is substantially the same as an etch rate of (N-doped-SiGe):(N-doped-Si). Such a wet-etch composition is hereafter referred to as a PAA-based etchant and can be used to make, e.g., a CMOS MBCFET, an electrode of a capacitor, etc.
摘要:
A wet-etch composition may include: peracetic acid (PAA); and a fluorinated acid; a relative amount of the PAA in the composition being sufficient to ensure an etch rate of (P-doped-SiGe):(P-doped-Si) that is substantially the same as an etch rate of (N-doped-SiGe):(N-doped-Si). Such a wet-etch composition is hereafter referred to as a PAA-based etchant and can be used to make, e.g., a CMOS MBCFET, an electrode of a capacitor, etc.
摘要:
A wet-etch composition may include: peracetic acid (PAA); and a fluorinated acid; a relative amount of the PAA in the composition being sufficient to ensure an etch rate of (P-doped-SiGe):(P-doped-Si) that is substantially the same as an etch rate of (N-doped-SiGe):(N-doped-Si). Such a wet-etch composition is hereafter referred to as a PAA-based etchant and can be used to make, e.g., a CMOS MBCFET, an electrode of a capacitor, etc.
摘要:
A method of fabricating a flash memory having a U-shape floating gate is provided. The method includes forming adjacent isolation layers separated by a gap and forming a tunnel oxide layer in the gap. After a conductive layer is formed on the tunnel oxide layer to a thickness not to fill the gap, a polishing sacrificial layer is formed on the conductive layer. The sacrificial layer and the conductive layer on the isolation layers are removed, thereby forming a U-shape floating gate self-aligned in the gap, and concurrently forming a sacrificial layer pattern within an inner portion of the floating gate. Selected isolation layers are then recessed to expose sidewalls of the floating gate. The sacrificial layer pattern is then removed from the floating gate to expose an upper surface of the floating gate.
摘要:
A wet-etch composition may include: peracetic acid (PAA); and a fluorinated acid; a relative amount of the PAA in the composition being sufficient to ensure an etch rate of (P-doped-SiGe):(P-doped-Si) that is substantially the same as an etch rate of (N-doped-SiGe):(N-doped-Si). Such a wet-etch composition is hereafter referred to as a PAA-based etchant and can be used to make, e.g., a CMOS MBCFET, an electrode of a capacitor, etc.
摘要:
A cleaning solution includes acetic acid, an inorganic acid, a fluoride compound, and deionized water, and may further include a corrosion inhibitor, a chelating agent, or a combination thereof. The cleaning solution may be used in the formation of a metal pattern in which a metal film including ruthenium is formed on a surface of a substrate, and a portion of the metal film is dry-etched to form a metal film pattern. After dry-etching, the metal film pattern is cleaned with the cleaning solution to remove an etching by-product layer around the metal film pattern. The cleaning solution may also be used to remove an etching by-product layer around an oxide film pattern prior to dry-etching of the metal film.
摘要:
In one aspect, a method of fabricating a semiconductor memory device is provided which includes forming a mold insulating film over first and second portions of a semiconductor substrate, where the mold insulating film includes a plurality of storage node electrode holes spaced apart over the first portion of the semiconductor substrate. The method further includes forming a plurality of storage node electrodes on inner surfaces of the storage node electrode holes, respectively, and forming a capping film which covers the storage node electrodes and a first portion of the mold insulating film located over the first portion of the semiconductor substrate, and which exposes a second portion of the mold insulating film located over the second portion of the semiconductor substrate. The method further includes selectively removing, including wet etching, the mold insulating film to expose a sidewall of at least one storage node electrode among the storage node electrodes covered by the capping film, and removing the capping film by dry etching to expose upper portions of the storage node electrodes.
摘要:
In one aspect, a method of fabricating a semiconductor memory device is provided which includes forming a mold insulating film over first and second portions of a semiconductor substrate, where the mold insulating film includes a plurality of storage node electrode holes spaced apart over the first portion of the semiconductor substrate. The method further includes forming a plurality of storage node electrodes on inner surfaces of the storage node electrode holes, respectively, and forming a capping film which covers the storage node electrodes and a first portion of the mold insulating film located over the first portion of the semiconductor substrate, and which exposes a second portion of the mold insulating film located over the second portion of the semiconductor substrate. The method further includes selectively removing, including wet etching, the mold insulating film to expose a sidewall of at least one storage node electrode among the storage node electrodes covered by the capping film, and removing the capping film by dry etching to expose upper portions of the storage node electrodes.
摘要:
A layer stack over a substrate is etched using a photoresist pattern deposited on the layer stack as a first mask. The photoresist pattern is in-situ cured using plasma. At least a portion of the photoresist pattern can be modified by curing. In one embodiment, silicon by-products are formed on the photoresist pattern from the plasma. In another embodiment, a carbon from the plasma is embedded into the photoresist pattern. In yet another embodiment, the plasma produces an ultraviolet light to cure the photoresist pattern. The cured photoresist pattern is slimmed. The layer stack is etched using the slimmed photoresist pattern as a second mask.
摘要:
Example embodiments may provide resistive random access memory devices and/or methods of manufacturing resistive random access memory devices. Example embodiment resistive random access memory devices may include a switching device and/or a storage node connected to the switching device. The storage node may include a stack structure including a plurality of resistance change layers separated from one another and first and second electrodes each on a side wall of the stack structure. The resistance change layers may be connected to the first and the second electrodes in parallel and/or may have different switching voltages from each other.