摘要:
A variable view imaging system for observation of micro object with variable view orientation and position includes a telecentric lens group, a scanning mirror, wedge prisms, a deformable mirror and related optical elements. The combination of a scanning mirror and a telecentric lens group decouples the motion of scanning mirror and the view angle. The view angle is determined only by the angle of the wedge prisms. This design increases the zenith angle of the view and simplifies the kinematics of the system. The wedge prisms and the scanning mirror can supply a flexible view in a compact way. The wavefront error induced by the wedge prisms is corrected by the deformable mirror. In order to achieve the desired view state during operation, the scanning mirror angle and the wedge prisms angle are calculated iteratively based on the kinematics and Jacobian matrix of system.
摘要:
A variable view imaging system for observation of micro object with variable view orientation and position includes a telecentric lens group, a scanning mirror, wedge prisms, a deformable mirror and related optical elements. The combination of a scanning mirror and a telecentric lens group decouples the motion of scanning mirror and the view angle. The view angle is determined only by the angle of the wedge prisms. This design increases the zenith angle of the view and simplifies the kinematics of the system. The wedge prisms and the scanning mirror can supply a flexible view in a compact way. The wavefront error induced by the wedge prisms is corrected by the deformable mirror. In order to achieve the desired view state during operation, the scanning mirror angle and the wedge prisms angle are calculated iteratively based on the kinematics and Jacobian matrix of system.
摘要:
Systems and methods for landmark correction in Magnetic Resonance Imaging (MRI) are provided. One method includes acquiring at least one calibration image or at least one localizer image of an object, identifying in the calibration or localizer images a region of the object as a reference point, wherein the reference point defines a landmark position. The method further includes determining an offset between an initial landmark position and the identified landmark position. The method also includes using the determined offset for MRI.
摘要:
Methods and systems for segmenting images, wherein the image pixels are categorized into a plurality of subsets using one or more indexes, then a log-likelihood function of one or more of the indexes is determined, and one or more maps are generated based on the determination of the log-likelihood function of one or more of the indexes.
摘要:
A method of determining an anatomically consistent scan protocol for an object of interest includes obtaining a volumetric image of an object of interest to be imaged, transforming the volumetric image, estimating the position and orientation of the object using the volumetric image and the transformed volumetric image, and modifying the imaging scan protocol using the estimated object position and orientation.
摘要:
Techniques for removing image autoflourescence from fluorescently stained biological images are provided herein. The techniques utilize non-negative matrix factorization that may constrain mixing coefficients to be non-negative. The probability of convergence to local minima is reduced by using smoothness constraints. The non-negative matrix factorization algorithm provides the advantage of removing both dark current and autofluorescence.
摘要:
Methods and systems for segmenting images, wherein the image pixels are categorized into a plurality of subsets using one or more indexes, then a log-likelihood function of one or more of the indexes is determined, and one or more maps are generated based on the determination of the log-likelihood function of one or more of the indexes.
摘要:
Systems and methods for landmark correction in Magnetic Resonance Imaging (MRI) are provided. One method includes acquiring at least one calibration image or at least one localizer image of an object, identifying in the calibration or localizer images a region of the object as a reference point, wherein the reference point defines a landmark position. The method further includes determining an offset between an initial landmark position and the identified landmark position. The method also includes using the determined offset for MRI.
摘要:
The present techniques provide systems and methods for registering images of tissue spots on a tissue microarray (TMA). In studies involving multiple biomarkers being studied on the same TMA, the TMA slide is removed from the microscope, stained, and then imaged, often multiple times. The present techniques relate to validation of the registration of the acquired images of the same TMA. An automatic approach to register the images and detect registration failures as provided herein may enhance the rapid analysis of the tissues. Artifacts such as tissue folding and tissue loss are also determined automatically.
摘要:
A method for determining 3D distances on a 2D pixelized image of a part or object includes acquiring a real 2D pixelized image of the object, creating a simulated image of the object using the 3D CAD model and the 2D pixelized image, determining a specified cost function comparing the simulated image with the real 2D pixilated image and repositioning the simulated image in accordance with iterated adjustments of a relative position between the CAD model and the 2D pixilated image to change the simulated image until the specified cost function is below a specified value. Then, the workstation is used to generate a 3D distance scale matrix using the repositioned simulated image, and to measure and display distances between selected pixels on a surface of the real image using 2D distances on the 2D pixelized image of the object and the 3D distance scale matrix.