Abstract:
An example head-worn device includes a camera, a display device, weld detection circuitry, and pixel data processing circuitry. The camera generates first pixel data from a field of view of the head-worn device. The display device displays second pixel data to a wearer of the head-worn device based on the first pixel data captured by the camera. The weld detection circuitry determines whether a welding arc is present and generates a control signal indicating a result of the determination. The pixel data processing circuitry processes the first pixel data captured by the camera to generate the second pixel data for display on the display device, where a mode of operation of said pixel data processing circuitry is selected from a plurality of modes based on said control signal.
Abstract:
A system comprises light intensity detection circuitry and pixel data processing circuitry. The light intensity detection circuitry is operable to determine whether a welding arc is present based on an intensity of light incident captured by the light intensity detection circuitry, and generate a control signal indicating a result of the determination. A mode of operation of the image processing circuitry may be selected from a plurality of modes based on the control signal. The light intensity detection circuitry may comprise, for example, a passive infrared sensor, a photodiode, and/or circuitry of a camera. The pixel data processing circuitry may comprise, for example, circuitry of a camera, a special purpose graphics processing unit, and/or a general purpose processing unit.
Abstract:
An example head-worn device includes a camera, a display device, weld detection circuitry, and pixel data processing circuitry. The camera generates first pixel data from a field of view of the head-worn device. The display device displays second pixel data to a wearer of the head-worn device based on the first pixel data captured by the camera. The weld detection circuitry determines whether a welding arc is present and generates a control signal indicating a result of the determination. The pixel data processing circuitry processes the first pixel data captured by the camera to generate the second pixel data for display on the display device, where a mode of operation of said pixel data processing circuitry is selected from a plurality of modes based on said control signal.
Abstract:
Systems and methods are provided for utilizing re-usable and re-configurable reporter modules in welding-type setups. A hardware-based reporting module may be used to handle reporting function. The hardware-based reporting module being configured to interface with a welding-type setup, to obtain welding-type data associated with the welding-type setup; and to interface with a remote central repository for communicating the obtained welding-type data, based on a predefined reporting format. The hardware-based reporting module is configured to process the welding-type data for communication to the remote central repository.
Abstract:
An example head-worn device includes a camera, a display device, weld detection circuitry, and pixel data processing circuitry. The camera generates first pixel data from a field of view of the head-worn device. The display device displays second pixel data to a wearer of the head-worn device based on the first pixel data captured by the camera. The weld detection circuitry determines whether a welding arc is present and generates a control signal indicating a result of the determination. The pixel data processing circuitry processes the first pixel data captured by the camera to generate the second pixel data for display on the display device, where a mode of operation of said pixel data processing circuitry is selected from a plurality of modes based on said control signal.
Abstract:
Disclosed example robotic welding systems include: a robotic manipulator configured to manipulate a welding torch; a first input device attached to the robotic manipulator and configured to receive rotational and translational inputs; a second input device attached to the robotic manipulator and configured to receive a masking input; and a robot control system, comprising: a processor; and a machine readable storage medium comprising machine readable instructions which, when executed by the processor, cause the processor to: in response to activation of the masking input via the second input device, masking at least a portion of the inputs received via the first input device; and in response to inputs to the first input device, move the robotic manipulator according to the inputs and based on whether the inputs are masked.
Abstract:
Systems and methods for using drones in dispersed welding applications are disclosed. In some examples, drones may be used in large and/or dispersed welding environments to quickly navigate the large distances and/or reach areas that might be more difficult for a person to reach. In some examples, the drones may use one or more attached devices to locate, identify, and/or collect information from welding equipment, welding workpieces, and/or welds within a (e.g., large and/or dispersed) welding environment.
Abstract:
A system comprises light intensity detection circuitry and pixel data processing circuitry. The light intensity detection circuitry is operable to determine whether a welding arc is present based on an intensity of light incident captured by the light intensity detection circuitry, and generate a control signal indicating a result of the determination. A mode of operation of the image processing circuitry may be selected from a plurality of modes based on the control signal. The light intensity detection circuitry may comprise, for example, a passive infrared sensor, a photodiode, and/or circuitry of a camera. The pixel data processing circuitry may comprise, for example, circuitry of a camera, a special purpose graphics processing unit, and/or a general purpose processing unit.
Abstract:
Some examples relate to a welding-type monitoring system configured to track parts, production, and/or operations within a welding-type production cell. In some examples, the monitoring system comprises a computing system, one or more tags attached to one or more first items, and/or one or more tag readers attached to one or more second items. In some examples, the one or more tags store data relating to the first items, and the one or more tag readers are configured to read the data using a close proximity communication protocol when in range of the one or more tags. After the tag reader reads the data from the tag, the computing system may determine whether one or more workflow events are associated with the data. If so, the computing system may execute an event script corresponding to the workflow event.