Abstract:
A genetic engineered bacteria without or comprising a plurality of important metabolic enzyme related genes is provided. When the by-product or waste of fruit and vegetable is used as the culture medium, a large quantity of succinic acid or lactic acid can be produced via fermentation. A method of producing succinic acid and lactic acid using the genetic engineered bacteria is also provided.
Abstract:
A polyester is copolymerized with diacid monomer, esterified diacid monomer or a combination thereof with a polyol monomer. The diacid monomer, the esterified diacid monomer or the combination thereof includes (1) furan dicarboxylic acid, dialkyl furandicarboxylate, or a combination thereof or (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or a combination thereof and spiro-diacid. The polyol monomer includes (3) C2-C14 polyol or (4) C2-C14 polyol and spiro-diol of Formula (I): and the spiro-diacid of Formula (II): The diacid monomer, esterified diacid monomer or combination thereof and polyol monomer meet: (a) The diacid monomer, the esterified diacid monomer or combination thereof includes (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or the combination thereof and spiro-diacid or (b) The polyol monomer includes (4) C2-C14 polyol and spiro-diol, and an amount of spiro-diol or spriro-diacid is 500 ppm to 2000 ppm based on a weight of furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof.
Abstract:
The present embodiment relates to a Plasticizer, which is fabricated by mixing monomers of biodegradable polymer with bio-molecules subsequently to deal the mixture with thermal treatment. The Biodegradable material comprising the Plasticizer has high melt index which is contributive for the processing of thermal processing, and the microwave-tolerance and water-resistance of the material makes the material suitable for food packaging.
Abstract:
A fiber includes polyester copolymerized with diacid monomer, esterified diacid monomer or combination thereof with a polyol monomer. The diacid monomer, esterified diacid monomer or combination thereof includes (1) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof or (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof and spiro-diacid. The polyol monomer includes (3) C2-C14 polyol or (4) C2-C14 polyol and spiro-diol. The diacid monomer, esterified diacid monomer or combination thereof and the polyol monomer meet: (a) diacid monomer, esterified diacid monomer or combination thereof includes (2) furan dicarboxylic acid, dialkyl furandicarboxylate, or combination thereof and spiro-diacid, (b) polyol monomer includes (4) C2-C14 polyol and spiro-diol, or (c) a combination thereof. The polyester has a viscosity at 30° C. of 0.5 dL/g to 1.5 dL/g, and an amount of spiro-diol or spriro-diacid is 500 ppm to 2000 ppm based on a weight of the furan dicarboxylic acid, dialkyl furandicarboxylate, or the combination thereof.
Abstract:
A genetic engineered bacteria without or comprising a plurality of important metabolic enzyme related genes is provided. When the by-product or waste of fruit and vegetable is used as the culture medium, a large quantity of succinic acid or lactic acid can be produced via fermentation. A method of producing succinic acid and lactic acid using the genetic engineered bacteria is also provided.