Abstract:
An accelerometer may include a seismic mass to flex based on acceleration components perpendicular to a surface of a substrate. The seismic mass may include a first electrode and a portion of the substrate. A first surface of the seismic mass may be adjacent to a first cavity in the substrate, and a second surface of the seismic mass being adjacent to a second cavity. The first surface of the seismic mass and the second surface of the seismic mass may be on opposite sides of the seismic mass. The accelerometer may include a second electrode separated from the second surface of the seismic mass by at least the second cavity.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.
Abstract:
According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
Abstract:
Embodiments relate to integrated circuit sensors, and more particularly to sensors integrated in an integrated circuit structure and methods for producing the sensors. In an embodiment, a sensor device comprises a substrate; a first trench in the substrate; a first moveable element suspended in the first trench by a first plurality of support elements spaced apart from one another and arranged at a perimeter of the first moveable element; and a first layer arranged on the substrate to seal the first trench, thereby providing a first cavity containing the first moveable element and the first plurality of support elements.
Abstract:
According to various embodiments, a carrier may include: a hollow chamber spaced apart from a surface of the carrier; and at least one support structure within the hollow chamber connecting a first region of the carrier disposed over the hollow chamber with a second region of the carrier disposed below the hollow chamber, wherein at least a part of a surface of the at least one support structure is spaced apart from an inner surface of the hollow chamber, and wherein the at least one support structure includes an electrically insulating material.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.
Abstract:
A microelectromechanical systems (MEMS) device is provided and includes a bulk semiconductor substrate, a cavity formed in the bulk semiconductor substrate, a movably suspended mass, a cap structure and a capacitive structure is shown. The movably suspended mass is defined in the bulk semiconductor substrate by one or more trenches extending from a main surface area of the bulk semiconductor substrate to the cavity. The cap is structure arranged on the main surface area of the bulk semiconductor substrate. The capacitive structure comprises a first electrode structure arranged on the movably suspended mass and a second electrode structure arranged at the cap structure such that the first electrode structure and the second electrode structure are spaced apart in a direction perpendicular to the main surface area of the bulk semiconductor substrate.
Abstract:
According to an embodiment, a method of forming a MEMS transducer includes forming a transducer frame in a layer of monocrystalline silicon, where forming the transducer frame includes forming a support portion adjacent a cavity and forming a first set of comb-fingers extending from the support portion. The method of forming a MEMS transducer further includes forming a spring support from an anchor to the support portion and forming a second set of comb-fingers in the layer of monocrystalline silicon. The second set of comb-fingers is interdigitated with the first set of comb-fingers.
Abstract:
The present disclosure relates to an integrated semiconductor device, comprising a semiconductor substrate; a cavity formed into the semiconductor substrate; a sensor portion of the semiconductor substrate deflectably suspended in the cavity at one side of the cavity via a suspension portion of the semiconductor substrate interconnecting the semiconductor substrate and the sensor portion thereof, wherein an extension of the suspension portion along the side of the cavity is smaller than an extension of said side of the cavity.
Abstract:
According to an embodiment, a method of forming a MEMS transducer includes forming a transducer frame in a layer of monocrystalline silicon, where forming the transducer frame includes forming a support portion adjacent a cavity and forming a first set of comb-fingers extending from the support portion. The method of forming a MEMS transducer further includes forming a spring support from an anchor to the support portion and forming a second set of comb-fingers in the layer of monocrystalline silicon. The second set of comb-fingers is interdigitated with the first set of comb-fingers.