Abstract:
A method performed by a memory chip is described. The method includes receiving an activated chip select signal. The method also includes receiving, with the chip select signal being activated, a command code on a command/address (CA) bus that identifies a next portion of an identifier for the memory chip. The method also includes receiving the next portion of the identifier on a portion of the memory chip's data inputs. The method also includes repeating the receiving of the activated chip select signal, the command code and the next portion until the entire identifier has been received and storing the entire identifier in a register.
Abstract:
Described herein is an apparatus for dynamically adjusting a voltage reference level for optimizing an I/O system to achieve a certain performance metric. The apparatus comprises: a voltage reference generator to generate a voltage reference; and a dynamic voltage reference control unit, coupled with the voltage reference generator, to dynamically adjust a level of the voltage reference in response to an event. The apparatus is used to perform the method comprising: generating a voltage reference for an input/output (I/O) system; determining a worst case voltage level of the voltage reference; dynamically adjusting, via a dynamic voltage reference control unit, the voltage reference level based on determining the worst case voltage level; and computing a center of an asymmetrical eye based on the dynamically adjusted voltage reference level.
Abstract:
A method performed by a memory controller is described. The method includes, during boot up, issuing a command to a memory to cause the memory to zero out its content. The method also includes bypassing a descrambler when reading from a location in the memory that has not had its zeroed out content written over the scrambled data. The method also includes processing read data with the descrambler when reading from a location in the memory that has had its zeroed out content written over with scrambled data.
Abstract:
Technologies for control and status register (CSR) access include a computing device that starts a firmware initialization phase. The firmware accesses a CSR at an abstract CSR address. The computing device determines whether an upper part of the CSR address matches a cached upper part of a previously accessed CSR address. If the upper parts do not match, the computing device converts the CSR address into a physical address and caches the upper part of the CSR address and the upper part of the physical address. If the upper parts match, the computing device combines a cached upper part of a previously accessed physical address with an offset of the CSR address. The upper part may include 20 bits and the lower part may include 12 bits. The physical address may be a PCIe address of the CSR added with an MMCFG base address. Other embodiments are described and claimed.
Abstract:
A memory controller transmits a control signal to a memory module, where the memory controller continuously transmits a clock signal to the memory module. The memory controller determines adjustments to the control signal with respect to the clock signal, by iteratively analyzing a strobe signal.
Abstract:
A method performed by a memory chip is described. The method includes receiving an activated chip select signal. The method also includes receiving, with the chip select signal being activated, a command code on a command/address (CA) bus that identifies a next portion of an identifier for the memory chip. The method also includes receiving the next portion of the identifier on a portion of the memory chip's data inputs. The method also includes repeating the receiving of the activated chip select signal, the command code and the next portion until the entire identifier has been received and storing the entire identifier in a register.
Abstract:
Technologies for control and status register (CSR) access include a computing device that starts a firmware initialization phase. The firmware accesses a CSR at an abstract CSR address. The computing device determines whether an upper part of the CSR address matches a cached upper part of a previously accessed CSR address. If the upper parts do not match, the computing device converts the CSR address into a physical address and caches the upper part of the CSR address and the upper part of the physical address. If the upper parts match, the computing device combines a cached upper part of a previously accessed physical address with an offset of the CSR address. The upper part may include 20 bits and the lower part may include 12 bits. The physical address may be a PCIe address of the CSR added with an MMCFG base address. Other embodiments are described and claimed.
Abstract:
Embodiments are generally directed to intelligent memory support for platform reset operation. An embodiment of a memory module includes a memory module controller and one or more memory banks. The memory module controller is to perform one or more internal reset processes as required for the memory module, and is to support a plurality of host platform reset processes to synchronize with the host platform.
Abstract:
Described herein is an apparatus for dynamically adjusting a voltage reference level for optimizing an I/O system to achieve a certain performance metric. The apparatus comprises: a voltage reference generator to generate a voltage reference; and a dynamic voltage reference control unit, coupled with the voltage reference generator, to dynamically adjust a level of the voltage reference in response to an event. The apparatus is used to perform the method comprising: generating a voltage reference for an input/output (I/O) system; determining a worst case voltage level of the voltage reference; dynamically adjusting, via a dynamic voltage reference control unit, the voltage reference level based on determining the worst case voltage level; and computing a center of an asymmetrical eye based on the dynamically adjusted voltage reference level.
Abstract:
Described herein is an apparatus for dynamically adjusting a voltage reference level for optimizing an I/O system to achieve a certain performance metric. The apparatus comprises: a voltage reference generator to generate a voltage reference; and a dynamic voltage reference control unit, coupled with the voltage reference generator, to dynamically adjust a level of the voltage reference in response to an event. The apparatus is used to perform the method comprising: generating a voltage reference for an input/output (I/O) system; determining a worst case voltage level of the voltage reference; dynamically adjusting, via a dynamic voltage reference control unit, the voltage reference level based on determining the worst case voltage level; and computing a center of an asymmetrical eye based on the dynamically adjusted voltage reference level.