Abstract:
In one embodiment, the present invention includes an apparatus having an adapter to communicate according to a personal computer (PC) protocol and a second protocol. A first interface coupled to the adapter is to perform address translation and ordering of transactions received from upstream of the adapter. The first interface is coupled in turn to heterogeneous resources, each of which includes an intellectual property (IP) core and a shim, where the shim is to implement a header of the PC protocol for the IP core to enable its incorporation into the apparatus without modification. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for sending a first link handshake signal between a first subsystem and a power management unit (PMU) of a system on a chip (SoC) to request entry into a power saving state for the first subsystem, sending a second link handshake signal between the first subsystem and the PMU to acknowledge the request, and placing the first subsystem into the power saving state without further signaling between the PMU and the first subsystem. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for sending a first link handshake signal between a first subsystem and a power management unit (PMU) of a system on a chip (SoC) to request entry into a power saving state for the first subsystem, sending a second link handshake signal between the first subsystem and the PMU to acknowledge the request, and placing the first subsystem into the power saving state without further signaling between the PMU and the first subsystem. Other embodiments are described and claimed.
Abstract:
Embodiments are generally directed to accelerated address indirection table lookup for wear-leveled non-volatile memory. A embodiment of a memory device includes nonvolatile memory; a memory controller; and address indirection logic to provide address indirection for the nonvolatile memory, of the address indirection logic to maintain an address indirection table (AIT) in the nonvolatile memory, the AIT including a plurality of levels, and copy at least a portion of the AIT to a second memory, the second memory having less latency than the first memory.
Abstract:
In one embodiment, the present invention includes a method for sending a first link handshake signal between a first subsystem and a power management unit (PMU) of a system on a chip (SoC) to request entry into a power saving state for the first subsystem, sending a second link handshake signal between the first subsystem and the PMU to acknowledge the request, and placing the first subsystem into the power saving state without further signaling between the PMU and the first subsystem. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes an apparatus having an adapter to communicate according to a personal computer (PC) protocol and a second protocol. A first interface coupled to the adapter is to perform address translation and ordering of transactions received from upstream of the adapter. The first interface is coupled in turn via one or more physical units to heterogeneous resources, each of which includes an intellectual property (IP) core and a shim, where the shim is to implement a header of the PC protocol for the IP core to enable its incorporation into the apparatus without modification. Other embodiments are described and claimed.
Abstract:
Embodiments are generally directed to accelerated address indirection table lookup for wear-leveled non-volatile memory. A embodiment of a memory device includes nonvolatile memory; a memory controller; and address indirection logic to provide address indirection for the nonvolatile memory, of the address indirection logic to maintain an address indirection table (AIT) in the nonvolatile memory, the AIT including a plurality of levels, and copy at least a portion of the AIT to a second memory, the second memory having less latency than the first memory.
Abstract:
Methods and apparatus related to supporting both DDR (Double Data Rate) and NVM (Non-Volatile Memory) DIMM (Dual Inline Memory Module) on the same memory slot are described. In one embodiment, a DIMM comprises volatile memory and non-volatile memory, and data is communicated with the volatile memory and the non-volatile memory via a single memory slot. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus related to supporting both DDR (Double Data Rate) and NVM (Non-Volatile Memory) DIMM (Dual Inline Memory Module) on the same memory slot are described. In one embodiment, a DIMM comprises volatile memory and non-volatile memory, and data is communicated with the volatile memory and the non-volatile memory via a single memory slot. Other embodiments are also disclosed and claimed.
Abstract:
In one embodiment, the present invention includes an apparatus having an adapter to communicate according to a personal computer (PC) protocol and a second protocol. A first interface coupled to the adapter is to perform address translation and ordering of transactions received from upstream of the adapter. The first interface is coupled in turn via one or more physical units to heterogeneous resources, each of which includes an intellectual property (IP) core and a shim, where the shim is to implement a header of the PC protocol for the IP core to enable its incorporation into the apparatus without modification. Other embodiments are described and claimed.