Abstract:
Aspects of mmWave beam tracking and beam sweeping are described, for example, spatial searching operations, directional beam forming, complex channel measurement operations, and adaptive power savings. Some aspects include using priori information for mmWave beam tracking and beam sweeping. Some aspects include using priori information to modify a superset of beam criteria to obtain a subset of beam criteria, select a spatial region according to the subset of beam criteria, and initiate a spatial searching operation within the spatial region for establishing a communication link. Some aspects include obtaining complex channel measurements of beams and combining the measurements with priori information to determine a beam for use in a communication link. Some aspects include providing signals from Nr over K1 input/output (IO) links and receiving signals over K1 IO links, and combining signals received over the K1 IO links, using a compression matrix, to generate signals over K IO links.
Abstract:
An apparatus may include a radio frequency (RF) transceiver to receive a first message over a first carrier in a first band in a downlink sub-frame of a first radio frame in a communications link, where the communications link comprises interband carriers aggregated over primary and secondary cells. The apparatus may also include a processor and a reply message assignment module operable on the processor to determine a downlink sub-frame in which the downlink transmission is received and to adjust timing of a reply/acknowledge message to be sent by the RF transceiver in response to the first message so as to coincide with a predetermined uplink sub-frame of a radio frame. Other embodiments are described and claimed.
Abstract:
Methods and devices are described for enabling different transmission modes that include full-duplex modes in a wireless network are described. A medium access control layer design is described that enables evaluation of interferences that would result from a transmission mode in order to facilitate decision making by the network access point and the wireless stations associated therewith in selecting a particular transmission mode. Signaling techniques for setting up the different transmission techniques are also described.
Abstract:
Methods adapted for measuring interference in joint communications and Access Points (APs) are described. The interference can be between the AP and first and second communication stations (STAs). In a method to measure interference, a first communication between the AP and the first STA can be established. Further, a second communication between the AP and the second STA can be established. The second communication can include transmitting a null data packet (NDP) to the second STA based on the first communication to measure STA-to-STA inference between the first STA and the second STA.
Abstract:
A user equipment (UE) is disclosed. The UE can monitor a set of physical downlink control channel (PDCCH) candidates defined in a search space Sk(L) (±) at an aggregation level L ε {1,2,4,8} for a subframe (k). The UE can decode a PDCCH of the set of PDCCH candidates according to a downlink control information (DCI) format.
Abstract:
In a communication method to communicate between an access point (AP) and first and second communication stations (STAs) can include calculating joint transmission information based on the first and the second STAs, establishing an uplink communication between the AP and the first STA; and establishing a downlink communication between the AP and the second STA jointly with the uplink communication between the AP and the first STA based on the joint transmission information.
Abstract:
Apparatus, systems, and methods to identify victims and aggressors of interference in full duplex communication systems are described. In one example, a controller comprises logic to detect a quality of service issue in a wireless communication downlink with a first user equipment in a first cell and in response to detecting the quality of service issue, determine whether the user equipment is a victim of interference from a second user equipment or is a victim of interference from a downlink with a second user equipment in a second cell. Other examples are also disclosed and claimed.
Abstract:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
Abstract:
A client station (STA), when operating in a wireless network, receives data sent by an access point (AP) on a first channel comprising at least one subchannel. During reception of the data on the first channel, the STA monitors channel availability of an additional set of one or more subchannels. In response to a detected availability of at least one newly-available subchannel, the STA sends at least one notification to the AP identifying STA-side availability of the newly-available subchannel(s). The STA subsequently receives data from the AP on the newly-available subchannel(s), which is sent in response to the at least one notification. The AP, when communicating data to the STA, receives the at least one notification from the STA and, in response thereto, initiates data transmission on one or more of the newly-available channel(s).
Abstract:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.