Abstract:
In wireless communication networks that use ARQ/HARQ feedback protocols, when a first device receives an apparent HARQ ACK from a second device, the first device may make a new transmission using a HARQ Channel ID whose previous usage was under conditions indicating a likelihood of error in the ACK. When the second device receives the new transmission, the reuse of that HARQ Channel ID in a new transmission rather than a retransmission lets the second device know that its previous NAK transmission was incorrectly received as an ACK.
Abstract:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
Abstract:
An apparatus may comprise a radio-frequency (RF) transceiver and a message aggregation module arranged to intercept multiple messages from one or more mobile data applications during an idle mode of a device, one or more of the multiple messages operable to trigger a transition of the device from the idle mode to a connected mode by causing a radio resource control message to be sent from the device to a radio access network, the message aggregation module to store the multiple messages in a buffer associated with the one or more mobile data applications in order to maintain the device in the idle mode, and schedule for transmission by the RF transceiver the stored messages at a defined time instance based on a delay tolerance for the one or more mobile data applications when the device is in the connected mode. Other embodiments are disclosed and claimed.
Abstract:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
Abstract:
Embodiments of a system and method for providing enhanced access barring in a Wireless Network are generally described herein. In an example, a method for controlling access in a mobile device network can include receiving access class barring (ACB) information at user equipment (UE) as part of a system information message including a first system information block, and receiving extended access barring (EAB) information at the UE as part of a system information message including a second system information block. The first system information block can be different from the second system information block.
Abstract:
In wireless communication networks that use ARQ/HARQ feedback protocols, when a first device receives an apparent HARQ ACK from a second device, the first device may make a new transmission using a HARQ Channel ID whose previous usage was under conditions indicating a likelihood of error in the ACK. When the second device receives the new transmission, the reuse of that HARQ Channel ID in a new transmission rather than a retransmission lets the second device know that its previous NAK transmission was incorrectly received as an ACK.
Abstract:
A network apparatus comprises a controller to determine a first base station for transmitting data and to determine a second different base station for receiving data. In one embodiment, the network apparatus further comprises a transceiver to transmit data to the first base station while associated with the second base station. The transceiver is operable to receive data from the second base station while associated with the first base station.
Abstract:
Embodiments of systems and methods for time domain multiplexing solutions for in-device coexistence are generally described herein. Other embodiments may be described and claimed.
Abstract:
An apparatus may comprise a radio-frequency (RF) transceiver and a message aggregation module arranged to intercept multiple messages from one or more mobile data applications during an idle mode of a device, one or more of the multiple messages operable to trigger a transition of the device from the idle mode to a connected mode by causing a radio resource control message to be sent from the device to a radio access network, the message aggregation module to store the multiple messages in a buffer associated with the one or more mobile data applications in order to maintain the device in the idle mode, and schedule for transmission by the RF transceiver the stored messages at a defined time instance based on a delay tolerance for the one or more mobile data applications when the device is in the connected mode. Other embodiments are disclosed and claimed.
Abstract:
Methods for contention-based transmission with contention-free feedback for reduced latency in LTE Advanced networks and an enhanced PUCCH are generally disclosed herein. User equipment (UE) may transmit a contention sequence on a physical uplink control channel (PUCCH) to an enhanced-Node B (eNB) and may concurrently transmit data requesting uplink resources on a physical uplink shared channel (PUSCH) to the eNB. The contention sequence is transmitted on the PUCCH in accordance with a format that is assigned by the eNB. The contention sequence is either randomly selected by the UE or assigned by the eNB. When the contention sequence and data are not successfully received by the eNB, the UE may fall back to a more conventional random access channel (RACH) procedure for uplink resource allocation.